This page is a companion for the
paper "Optimal sequential contests"
by Toomas Hinnosaar.
For the notation and the computation algorithm, please refer to the paper.
Download the Matlab codes here.
There are two relevant inputs:
Click on the desired n and g(X) combination to compute the equilibrium.
Tullock | Linear | Exponential | Logarithmic h | |
---|---|---|---|---|
Simultaneous | n=(5) g(X)=X(1-X) |
n=(5) g(X)=1-X |
n=(5) g(X)=(2(-X)-0.5)/(log(2)) |
n=(5) g(X)=-Xlog(X) |
Sequential | n=(1,1,1,1,1) g(X)=X(1-X) |
n=(1,1,1,1,1) g(X)=1-X |
n=(1,1,1,1,1) g(X)=(2(-X)-0.5)/(log(2)) |
n=(1,1,1,1,1) g(X)=-Xlog(X) |
First-mover | n=(1,4) g(X)=X(1-X) |
n=(1,4) g(X)=1-X |
n=(1,4) g(X)=(2(-X)-0.5)/(log(2)) |
n=(1,4) g(X)=-Xlog(X) |
Last-mover | n=(4,1) g(X)=X(1-X) |
n=(4,1) g(X)=1-X |
n=(4,1) g(X)=(2(-X)-0.5)/(log(2)) |
n=(4,1) g(X)=-Xlog(X) |