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Abstract

This paper studies a new form of auctions called penny auctions. In
these auctions, strange things happen. Sometimes an auction selling cash
generates revenue an order of magnitude higher than amount of cash sold,
sometimes an order of magnitude lower. Sometimes the winner of the
auction pays an order of magnitude less than many losers losers at the
same auction. We will describe stylized facts about these auctions in
practice and propose a tractable model that replicates these facts. We
show that in this model, the actual outcomes and the revenue for the
seller are in general be very volatile and characterize conditions under
which the expected revenue takes its maximal value.

1 Introduction

A typical penny auction1 may sell a new brand-name digital camera, at starting
price 0 and timer at 1 minute. When the auction starts, the timer starts to tick
down and players may submit bids. Each bid costs $1 to the bidder, increases
price by $0.01, and resets the timer to 1 minute. Once the timer ticks to 0, the
bidder who made the last bid can purchase the object at the current price. Note
that the structure of penny auctions is similar to dynamic English auctions, but
with just one significant difference. In penny auction the bidder has to pay
significant price for each bid she makes.

Both the name and general idea of the auction is very similar to the dollar
auction introduced by Shubik (1971). In this auction cash is sold to the highest
bidder, but the two highest bidders will pay their bids. Shubik used it to
illustrate potential weaknesses of traditional solution concepts and described
∗t-hinnosaar@northwestern.edu.
1There are two kinds of practical auctions where the name penny auctions has been used.

First type was observed during the Great Depression, foreclosed farms were sold at the auc-
tions. In these auctions sometimes the farmers colluded to keep the farm in the community
at marginal prices. These low sales prices motivated the name penny auctions. Second use
of the term comes from the Internet age, where in the auction sites auctions are sometimes
started at very low starting prices to generate interest in the auctions. Both uses of the term
are unrelated to the auctions analyzed in this paper.
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this auction as extremely simple, highly amusing, and usually highly profitable
for the seller.

Dollar auction is a version of all-pay auction, that has used to describe rent-
seeking, R&D races, political contests, and job-promotions. Full characteriza-
tion of equilibria under full information in one-shot (first-price) all-pay auctions
is given by Baye, Kovenock, and de Vries (1996). A second-price all-pay auction,
also called war of attrition, was introduced by Smith (1974) and has been used
to study evolutionary stability of conflicts, price wars, bargaining, and patent
competition. Full characterization of equilibria under full information is given
by Hendricks, Weiss, and Wilson (1988). Siegel (2009) provides a equilibrium
payoff characterization for general class of all-pay contests.

Penny auction is clearly an all-pay auction, but not a special case of well
known auctions mentioned above. None of the auctions mentioned above allow
the actual winner to pay less than the losers, but in penny auctions it happens
in practice relatively often. Finally, in a special case where bid cost converges
zero, penny auction is converging to a dynamic first price auction. In this paper
we only consider auctions with strictly positive bid costs. We will show that in
the limit where bid costs are close to zero, the object is never sold.

Section 2 describes how penny auctions are used in practice and shows some
stylized facts. Section 3 introduces the model and assumptions. The analysis is
divided into two parts. Section 4 analyzes the case when the price increment,
or “the penny” in the auction name is zero, which means that the auction game
will be infinite. Section 5 discusses the case, where price increment is strictly
positive. Section 6 gives some concluding remarks and suggests extensions for
the future research.

2 Stylized facts

The data used in this section comes from Swoopo.com2, a large penny auctions
site. The data about 61,153 auctions were collected directly from their website
and includes all auctions that had complete data in the beginning of May 20093

Each auction had information about the auction type, the value of the object
(suggested retail price), delivery cost, the winners identity and the number of
free and costly bids the winner made (used to calculate “the savings”), and the
identities of 10 last bidders with information whether the bid was made using
BidButler4 or not (594,956 observations in total).

All auctions in Swoopo have the same structure as described in this paper,
but they have several different types of auctions which imply different parameter
values. Their main auction types are the following5.

2See http://www.swoopo.com/what_is.html for details.
3Auctions that had incomplete data or had not finished were excluded from the dataset.
4BidButler is an automatic bidding system where user fixes minimum and maximum price

and the number of bids between them and the system makes bids for them according to some
semi-public algorithm.

5Auctions also differ by the length of timer, ie in 20-Second Auction if after the last
submitted bid the timer ticks 20 seconds, the auction ends.
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• Regular auction6 is a penny auction with price increment of $0.15 and bid
cost of $0.757.

• Penny auction is an auction where price increment is $0.01 instead of
$0.15.

• Fixed Price Auction, where at the end of auction the winner pays some
pre-announced fixed price instead of the ending price of the auction. The
Free Auction (or 100% Off Auction) is a special case of Fixed Price Auc-
tion where the winner pays only the delivery charges.8 Both of these
auction have the property that price increment is zero, which means that
there is no clear ending point and the auctions could in principle continue
infinitely.

• NailBiter Auction is an auction where BidButlers are not allowed, so that
each bid is made by actual person clicking on the bid button.

• Finally there are some variations regarding restrictions about customers
who can participate. If not specified otherwise, everyone who has won less
than eight auctions per current calendar month can participate. Beginner
Auction is restricted to customers who have never won an auction. Open
Auction is an auction where the eight auction limit does not apply, so it
is fully unrestricted.

The number of observations and some statistics to compare the orders of
magnitude are given in the Table 1. Column V is the average retail value and
P the average price paid by the winner. Variables v, c, and p are normalized
value, bid cost, and end price that we will discuss and use later. Note that p
can be interpreted as the average number of bids made in the auction. As we
can see, objects sold in different types are quite different and induce differing
outcomes.

Figure 1 describes the distribution of end prices in different auction formats.
To be able to compare the prices of objects with different values, the plot is
normalized by the value of object. For example 100 means that final price
equals the retail price. Clearly penny auctions have different distribution as
expected, since to reach any particular price level, in penny auction the bidders
have to make 15 times more bids than in other formats. From the other formats,
it seems that the nailbiter and beginner auctions have somewhat bigger mass
at low values, but otherwise the distributions are relatively similar.

The most intriguing fact in the Figure 1 should be the positive mass in
relatively high prices, since the cumulative bid costs to reach to these prices can

6In the calculations below, we call the auction regular if it is not any of the other types of
the auctions, but the other types are not mutually exclusive. For example auction can be a
nailbiter penny auction with fixed price, so it is included in calculations to all three types.

7In all auction formats, $0.75 is the standard price, which is actually the upper bound of
bid cost, since bids can be purchased in packages so that they are cheaper and perhaps also
sunk. Also, sometimes bids can be purchased at Swoopo auction at uncertain costs.

8Note that both Fixed Price Auctions and Free Auctions were discontionued by 2009, “in
order to provide a more convenient bidding experience”.
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Type Obs V P v c p (# of bids)
Regular 41760 166.9 46.7 1044 5 242.9
Penny 7355 773.3 25.1 75919.2 75 1098.1

Fixed price 1634 967 64.9 6290.7 5 2007.2
Free 3295 184.5 0 1222 5 558.5

Nailbiter 924 211.5 8.3 1394.1 5 580.1
Beginner 6185 214.5 45.8 1358.5 5 301.6

All auctions 61153 267.6 41.4 10236.3 13.4 420.9

Table 1: Some statistics about the auctions

Figure 1: Distribution of normalized end prices in different types of auctions
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be much higher than the value of the object. This implies that the profit margins
to the seller and winner’s payoff are very volatile. Indeed, Figure 2 describes the
distribution of the profit margin910 in different auctions, and there is positive
mass in very high profit margins. The figure is somewhat arbitrarily truncated
at 1400%, there also is positive, but small mass at much higher margins. Note
that the profit margin is calculated relative to suggested retail value, so that
zero profit margin should be sufficient profit for a retail company, but mean
profit margin is positive for all the auctions.

Figure 2: Distribution of the profit margin in different types of auctions

Similarly, Figure 3 describes the winner’s savings1112 from different types of
auctions. In this plot, 0 would mean no savings compared to retail price, so that
on the left of this line even the winner would have gained just by purchasing
the object from a retail store. Mostly the winner’s savings are highly positive,
which is probably the reason why agents participate in the auctions after all.

9Profit margin is simply defined as End price+Total bid costs−Value
Value

· 100.
10To make the plot, we need an approximate for the average bid costs. Official value is $0.75,

but it is possible to get some discounts and free bids, so this would be the upper bound. In
the dataset we have the number of free and non-free bids that the winners made and it turns
out that about 92.88% of the bids are not free, so we used 92.88% of $0.75 which is $0.6966 as
the bid cost. The overall average profit margin would be 0 at average bid cost $0.345, which
is about two times smaller than our approximation of the average bid cost.

11Defined by Swoopo.com as the difference between the value of the object and winner’s
total cost divided by the value. Obviously, the losers will not save anything and the winner
cannot ensure winning, so the term “savings” can be misleading in ex-ante sense.

12Again, the question is what is the right average bid cost to use. For the winners we know
the number of free bids, so this is taken into account precisely, but for the costly bids, the we
used the official value $0.75. True value may be below it, since there could be some quantity
discounts, but it does not take into account any other constraints (like cost of time and effort).
However, winner’s average savings are positive for bid costs up to $2.485, which is far above
the reasonable upper bounds of the bid cost.
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The density of the winnings is increasing in all auctions with mode near 100%,
but the auctions differ. The regular auctions have lowest mean and flattest
distribution, whereas penny auctions, and the two fixed price auction types
have highest mean and more mass concentrated near 100%. This is what we
would expect, since in penny auction the actual price rises slowly and in fixed
price auctions it does not change at all, so that the cost is relatively more equally
distributed between the bidders (if the winner was the one making most of the
bids, she would win very early).

Figure 3: Distribution of the winner’s savings in different types of auctions

The final piece of stylized facts we are looking here is the distribution of the
number of bids. Figure 4 shows the distribution of the number of bids made
in most auctions. In this figure we can see that two types of auctions are very
different than other — in fixed price auctions13 and penny auctions the auction
generally lasts much longer than in other types. The type where auction ends
at relatively low number of bids relatively more often is the nailbiter auction,
where the bidders cannot use automated bidding system.

3 The Model

The goal of the next three sections is to introduce a framework that generates
the stylized facts from the previous section. We will discuss some extensions in
Sections 6.

The auction sells an object with market price of V dollars. This is fixed and
common value to all the participants. There are N + 1 ≥ 2 players (bidders)
participating in the auction, denoted by i ∈ {0, 1, . . . , N}. We assume that

13The fact that Free auctions and Fixed Price auctions look different in this figure is some-
what surprising and explaining this would probably require more careful empirical analysis.
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Figure 4: Distribution of the number of bids submitted in different types of
auctions, range of low values

all bidders are risk-neutral and at each point of time maximize the expected
continuation value of the game (in dollars).

The auction is dynamic, bids are submitted in discrete time points t =
0, 1, . . . . Auction starts at initial price P0

14. At each t > 0 exactly one of the
players is the current leader and other N players are non-leaders. At time t = 0
all N + 1 bidders are non-leaders.

At each t, the non-leaders simultaneously choose whether to submit a bid
or pass. Each submission of a bid costs C dollars and increases price by price
increment ε. If K > 0 non-leaders submit a bid, each of them will be the leader
in the next period with equal probability, 1

K . So, if K > 0 bidders submit a bid
at t, then Pt+1 = Pt+Kε, and each of these K pays C dollars to the seller. The
other non-leaders and the current leader will not pay anything at this round
and will be non-leaders with certainty. The current leader cannot anything15.
If all non-leaders pass at time t, the auction ends. If the auction ends16 at t = 0,
then the seller keeps the object and if it ends at t > 0, then the object is sold
to the current leader at price Pt. Finally, if the game never ends, all bidders
get payoffs −∞ and the seller keeps the object. All the parameters of the game
are commonly known and the players know the current leader and observe all
the bids by all the players. We denote the actual revenue to the seller by R,
expected revenue by E(R), and expected revenue, conditional on object being

14We will assume that it includes also the delivery costs.
15This is a simplifying assumption. However, thinking about the practical auctions, it seems

to be a plausible assumption to make. We will assume that the practical design of the auction
is constructed so that whenever a current leader submitted a bid, the auctioneer or system
assumes that it was just a mistake and ignores the bid.

16Note that the auction ends at t > 0 if and only if there has been positive number of bids,
so Pt > P0.
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sold, by E(R|sale).
We will use the following normalizations. In case ε > 0, we normalize v =

V−P0
ε , c = C

ε , and pt = Pt−P0
ε , so that in particular p0 = 0. In games where

ε = 0 we use v = V − P0, c = C, and pt = Pt − P0. Given the assumption and
normalizations, a penny auction is fully characterized by (N, v, c, ε), where ε is
only used to distinguish between infinite games discussed in Section 4 and finite
games in Section 5.

Assumption 1. We assume17 v − c > bv − cc and v > c+ 1.

The first assumption says that v − c is not a natural number. It is just a
technical assumption to avoid considering some tie-breaking cases, where the
players are indifferent between submitting one last bid and not. The second
assumption just ignores irrelevant cases, since c + 1 is the absolute minimum
amount of money a player must spend to win the object. So, if the assumption
does not hold, the game never starts.

As the solution concept we are considering Symmetric Stationary Subgame
Perfect Nash Equilibrium (SSSPNE). We will discuss the formal details of this
equilibrium in Appendix A and show that in the cases we consider SSSPNE are
Subgame Perfect Nash Equilibria that satisfy two requirements. First property
is Symmetry, which means that the players’ identity does not play any role (so
it could also be called Anonymity). The second property is Stationarity, which
means that instead of conditioning their behavior on the whole histories of bids
and identities of leaders, players only condition their behavior on the current
price and number of active bidders.

In case ε > 0 this restriction means that we can use the current price p (in-
dependent on time or history how we arrived to it) as the current state variable
and solve for a symmetric Nash equilibrium in this state, given the continua-
tion values at states that follow each profile of actions. So the equilibrium is
fully characterized by a q : {0, 1, . . . } → [0, 1], where q(p) is the probability of
submitting a bid that each non-leader independently uses at price p.

In case ε = 0 the equilibrium characterization is even simpler, since there are
only two states. In the beginning of the game there is N +1 non-leaders, and in
any of the following histories the number of non-leaders isN . So, the equilibrium
is characterized by (q̂0, q̂) where q̂0 is the the probability that a player submits
a bid at round 0 and q̂ is the probability that a non-leader submits a bid at any
of the following rounds. The SSSPNE can be found simply by solving for Nash
equilibria at both states, taking into account the continuation values.

Lemmas 3, 4, and 5 in Appendix A show that any equilibria found in this way
are SPNE satisfying Symmetry and Stationarity, and vice versa, any SSSPNE
can be found using the described methods.

It must be noted that restricting the attention to this particular subset of
Subgame Perfect Nash equilibrium, is restrictive and simplifies the analysis.
As we will argue later, in general there are many other Subgame Perfect Nash
equilibria in these auctions. The restrictions correspond to a situation where

17Where b·c is the floor function bxc = min{k ∈ Z : k ≤ x}.
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the players are only shown the current price. In practice players have more
information, but in the case when they for one reason or another do not want
to put in enough effort to keep track on all the bids (or believe that most of
the opponents will not do it), the situation is similar. As an approximation this
assumption should be quite plausible.

4 Auction with zero price increment

We will first look at a case where the price increment ε = 0. This is called
“Free auction” (if P0 = 0) or “Fixed-price auction” (if P0 > 0) in Swoopo.com.
One could also argue that this could be a reasonable approximation of a penny
auction where ε is positive, but very small, so that the bidders perceive it as 0.

In this case the auction is an infinitely repeated game, since there is nothing
that would bound the game at any round18. After each round of bids, bid costs
are already sunk and the payoffs for winning are the same.

This is a well-defined game and we can look for SSSPNE in this game. Since
the price does not change, the SSSPNE is fully characterized by a pair (q̂0, q̂),
where q̂0 is the probability that a non-leader will submit at round 0 and q̂ the
probability that a non-leader submits a bid at any round after 0. Let v̂∗, v̂ be
the leader’s and non-leaders’ continuation values (after period 0).

Theorem 1. In the case ε = 0, there exists a unique SSSPNE (q̂0, q̂), such that

1. q̂ ∈ (0, 1) is uniquely determined by equality (1− q̂)NΨN (q̂) = c
v , where19

ΨN (q) =
N−1∑
K=0

(
N − 1
K

)
qK(1− q)N−(K+1) 1

K + 1
.

2. If N + 1 = 2, then q̂0 = 0, otherwise q̂0 ∈ (0, 1) is uniquely determined by
(1− q̂)NΨN+1(q̂0) = c

v .

Function ΨN (q) is the player i’s probability of becoming the new leader in
after submitting a bid when N − 1 other non-leaders submit their bids inde-
pendently, each with probability q. The 1

K+1 part comes from the fact that if
K other non-leaders submit bids, then i becomes the leader with this probabil-
ity. Since each make their decision separately, K is Binomially distributed with
parameters (q,N − 1), which gives us the expression.

Proof. First notice that there is no pure strategy equilibria in this game, since
if q̂ = 1, then the game never ends and all players get −∞, which cannot be
an equilibrium. Also, if q̂ = 0, then v̂∗ = v and v̂ = 0. This cannot be an
equilibrium, since a non-leader would want to deviate and submit a bid to get

18This is in contrast to ε > 0 case, where the game always ends in finite time. We will
establish this in Lemma 1.

19
(N
K

)
is the binomial coefficient,

(N
K

)
= N !

K!(N−K)!
, ∀0 ≤ K ≤ N .
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v̂∗− c, which is higher than v̂, since v > c+ 1 > c by assumption. Therefore, in
any equilibrium q̂ ∈ (0, 1).

We will start with the case when N + 1 = 2. Since the equilibrium is in
mixed strategies, non-leader’s value must be equal when submitting a bid or
not. If she submits a bid, she will be the next leader with certainty and the
value of not submitting a bid is 0, since the game ends with certainty. Thus
v̂ = v̂∗ − c = 0, and so v̂∗ = c. Being the leader, there is (1 − q̂) probability
of getting the object and q̂ probability of getting v̂ = 0 in the next round, so
v̂∗ = (1− q̂)v = c and therefore q̂ = 1− c

v .
At t = 0, if q̂0 > 0 then expected value from bid is strictly negative20,

therefore the only possible equilibrium is such that q̂0 = 0, ie with no sale. This
is indeed an equilibrium, since by submitting a bid alone gives v̂∗ = c with
certainty and costs c with certainty, so it is not profitable to deviate.

Note that when N = 1, then Ψ1(q̂) = 1, so (1 − q̂)NΨ1(q̂) = 1 − q̂ and
(1 − q̂)v = c

vv = c = v̂∗, so the results are a special case of the claim from the
theorem.

Suppose now that N + 1 ≥ 3. Look at any round after 0. Again, this is a
mixed strategy equilibrium, where q̂ ∈ (0, 1), so non-leader’s value is equal to the
expected value from not submitting a bid. The other N − 1 non-leaders submit
a bid each with probability q̂, which means that the game ends with probability
(1− q̂)N−1 and continues from the same point with probability 1− (1− q̂)N−1.
Therefore

v̂ = [1− (1− q̂)N−1]v̂ + (1− q̂)N−10 ⇐⇒ v̂ = 0,

since 0 < q̂ < 1. This gives the leader (1 − q̂)N chance to win the object and
with the rest of the probability to become a non-leader who gets 0, so

v̂∗ = (1− q̂)Nv + [1− (1− q̂)N ]v̂ = (1− q̂)Nv.

The value of q̂ is pinned down by the mixing condition of a non-leader

v̂ = 0 =
N−1∑
K=0

(
N − 1
K

)
q̂K(1− q̂)N−1−K

[
1

K + 1
v̂∗ +

K

K + 1
v̂

]
− c ⇐⇒

c

v
= (1− q̂)N

N−1∑
K=0

(
N − 1
K

)
q̂K(1− q̂)2N−(K+1)

K + 1
= (1− q̂)NΨN (q̂).

By Lemma 6, ΨN (q̂) is strictly decreasing continuous function with limits 1
and 1

N as q̂ → 0 and q̂ → 1 correspondingly. As q̂ changes in (0, 1), it takes
all values in the interval

(
1
N , 1

)
, each value exactly once. Now, (1 − q̂)N is

also strictly decreasing continuous function with limits 1 and 0, so the function
(1 − q̂)NΨN (q) is a strictly decreasing continuous function in q̂ and takes all
values in the interval (0, 1). Since 0 < c

v < 1 and there exists unique q̂ ∈ (0, 1)
that solves the equation (1− q̂)NΨN (q̂) = c

v .

20The cost is certainly c, but expected benefit is weighted average c and 0 both with strictly
positive probability.
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Let us now consider period 0 to find the equilibrium strategy at q̂0. Denote
the expected value that a player gets from playing the game by v̂0. We claim
that q̂0 ∈ (0, 1). To see this, suppose first that q̂0 = 0, which means that
the game ends instantly and all bidders get 0. By submitting a bid, a player
could ensure becoming the leader with certainty in the next round and therefore
getting value v̂∗− c = (1− q̂)Nv− c. Equilibrium condition says that this must
be less than equilibrium payoff 0, but then

(1− q̂)Nv − c ≤ 0 ⇐⇒ (1− q̂)N ≤ c

v
= (1− q̂)NΨN (q̂),

so ΨN (q̂) ≥ 1. This is contradiction, since ΨN (q̂) < 1 for all q̂ > 0.
Suppose now that q̂0 = 1 is an equilibrium, so that each bidder must weakly

prefer bidding to not bidding and getting continuation value of a non-leader,
v̂ = 0. This gives equilibrium condition

1
N + 1

v̂∗−c =
1

N + 1
(1− q̂)Nv−c ≥ 0 ⇐⇒ (1− q̂)N

N + 1
≥ c

v
= (1− q̂)NΨN (q̂),

so ΨN (q̂) ≤ 1
N+1 <

1
N , which is a contradiction by Lemma 6.

Thus, in equilibrium 0 < q̂0 < 1 is defined by

0 =
N∑
K=0

(
N

K

)
q̂K0 (1− q̂0)N−K

1
K + 1

v̂∗− c ⇐⇒ (1− q̂)NΨN+1(q̂0) =
c

v
.

To show that this equation defines q̂0 uniquely (for a fixed q̂ ∈ (0, 1)), we can
rewrite it as follows.

(1− q̂)NΨN+1(q̂0) =
c

v
= (1− q̂)NΨN (q̂) ⇐⇒ ΨN+1(q̂0) = ΨN (q̂).

Now, ΨN (q̂) is a fixed number. By Lemma 6 ΨN (q̂) ∈
(

1
N , 1

)
. As argued

above (continuous, strictly decreasing) ΨN+1(q̂0) takes values in the interval(
1

N+1 , 1
)
⊃
(

1
N , 1

)
, so the equation must have unique solution q̂0.

Corollary 1. From Theorem 1 we get the following properties of the auctions
with ε = 0:

1. q̂0 < q̂.

2. If N+1 > 2, then the probability of selling the object is 1−(1−q̂0)N+1 > 0.
If N + 1 = 2, the seller keeps the object.

3. Expected ex-ante value to the players is 0.

4. Expected revenue to the seller, conditional on sale, is v,

Proof. We will prove each part and also give some intuition where applicable.
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1. By Lemma 6, ΨN+1(q) ≥ ΨN (q). Since ΨN+1(q̂0) = ΨN (q̂) and ΨK(q) is
strictly decreasing function of q, we have q̂0 < q̂.

This is intuitive, since from the perspective of a non-leader, the two situ-
ations are identical in terms of continuation values, but at t = 0 there is
one more opponent trying to become the leader.

2. This is just reading from the theorem. By the rules of the game, the seller
sells the object whenever there was at least one bid, so the object is not
sold only in the case when all bidders choose not to submit a bid at round 0.
Therefore, the object is sold with probability P (p > 0) = 1− (1− q̂0)N+1.

If N + 1 = 2, then q̂0 = 0, so P (p > 0) = 0. If N + 2 > 2, then q̂0 > 0, so
P (p > 0) > 0.

3. Let v̂0 be the expected ex ante value to the players. If N + 1 = 2, then
v̂0 = 0, since players pass with certainty. If N + 1 > 2, then each bidder is
at round 0 indifferent between bidding and not bidding, and not bidding
gives 0 if none of the other players bid and v̂ = 0 of some bid. Therefore
v̂0 = 0.

4. There is another way how the ex-ante value to the players, v̂0, can be
computed. Let the actual number of bids the players submitted in a
particular realization of uncertainty be B. Conditioning on sale means
that B > 0.

Since the value to the winner is v, and collectively all the players paid Bc
in bid costs, the aggregate value to the players is v − Bc. By symmetry
and risk-neutrality, ex-ante this value is divided equally among all players,
so

0 = (N + 1)v(0) =
∞∑
B=1

[v −Bc]P (B|B > 0) = v − cE(B|B > 0).

Expected revenue to the seller, given that the object is sold, is Bc from
all the bids. So

E(R|sale) = E(Bc|B > 0) = cE(B|B > 0) = v.

The following observations illustrate, that although in expected terms all
the payoffs are precisely determined, in actual realizations almost anything can
happen with positive probability.

Observation 1.

1. With probability (N +1)(1− q̂0)N q̂0(1− q̂)N > 0 the seller sells the object
after just one bid and gets R = c. The winner gets v − c and the losers
pay nothing.
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2. When we fix arbitrarily high number R̄, then there is positive probability
that revenue R > R̄. This is true since there is positive probability of sale
and at each round there is positive probability that all non-leaders submit
bids.

3. With positive probability we can even get a case where revenue is bigger
than R̄, but the winner paid just c.

Observation 2. None of the qualitative results in this case were dependent
on the parameter values, so changes in parameters only affect the numerical
outcomes.

1. In particular, given that the assumptions are satisfied, the expected rev-
enue and the total payoff to the bidders does not depend on the parameter
values other than the fact that E(R|sale) = v.

2. Equilibrium conditions were (1− q̂)NΨN (q̂) = c
v and ΨN+1(q̂0) = ΨN (q̂)

and functions (1− q̂)NΨN (q),ΨN (q), and ΨN+1(q) are strictly decreasing.
Therefore, as c

v increases, both q̂ and q̂0 will decrease.

This means that for a fixed v, as c decreases, the probability of sale de-
creases. Note that in the limit as c → 0, we get an auction that can be
approximately interpreted as dynamic English auction. The puzzling fact
is that in this auction the object is never sold.

3. As N increases, since ΨN (q) is decreasing in N , both q̂ and q̂0 decrease.

Remark 1. The discussion above was about SSSPNE. If we do not require sta-
tionarity and symmetry, then almost anything is possible in terms of equilibrium
strategies, expected revenue to the seller, and the payoffs to the bidders. It is
easy to see this from the following argument

1. Fix i ∈ {1, . . . , N + 1}. One possible SPNE is such that player i always
bids and all the other players always pass. This is clearly an equilibrium
since given i’s strategy, any j 6= i can never get the object and can never
get more than 0 utility. Also, given that none of the opponents bid, i
wants to bid, since v − c > 0. This equilibrium gives v − c to i and 0 to
all the other bidders.

2. Using this continuation strategy profile as a “punishment” we can con-
struct other equilibria, including one where no-one bids (if i bids at the
first round then some j 6= i will punish him by always bidding in the
next rounds that, so that the deviator i pays c and gets nothing, whereas
punisher j will get v − c > 0).

3. Or we can construct an equilibrium where all the players bid bv/cc times
and then quit. If the bidding rule is constructed so that all bidders get
non-negative expected value and are punished as described above, this is
indeed a possible equilibrium. This will be the highest possible revenue
from a pure strategy equilibrium with symmetry on the path of play.
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4. With suitable randomizations it should be easy to construct equilibria
that extract any revenue from c to v.

5 Auction with positive price increment

First we will introduce some additional notation. In a given equilibrium, let q(p)
be the non-leaders’ probability to bid at price p. v∗(p) denotes leader’s value
and v(p) non-leaders’ continuation values at price p. In a given equilibrium,
P (p) denotes the probability that price p will be the realized sales price. If
q(0) > 0, P (p|sale) = P (p)

q(0) , is the distribution of the realization of sales price,
conditional on object being sold.

E(R|p > 0) denotes the expected revenue to the seller, conditional on the
object being sold. R denotes the revenue under any realization of uncertainty.21

Finally, define p̃ = bv − cc and γ = (v − c) − bv − cc ∈ [0, 1), so that
v = c+ p̃+ γ. Note that by Assumption 1, γ > 0 and p̃ > 0.

If price increment is positive and game goes on, the price rises. This means
if the game does not end earlier, then sooner or later the price rises to a level
where none of the bidders would want to bid. The following Lemma establishes
this obvious fact formally and gives upper bound to the prices where bidders
are still active.

Lemma 1. Fix any equilibrium. None of the players will place bids at prices
pt ≥ p̃. That is, q(p) = 0 for all p ≥ p̃.

Proof. First note that if p > v, then the upper bound of the winner’s payoff in
this game is v−p < 0 and therefore any continuation of this game is worse to all
the players than end at this price. So, we know that the prices where q(p) > 0
are bounded by v.

Let p̂ be the highest price where q(p̂) > 0. Suppose by contradiction that
p̂ ≥ p̃ = bv − cc. Since q(p̂ + K) = 0 for all K ∈ N, the game ends instantly if
arriving to these prices. Therefore v(p̂+K) = 0 < c, and so

v∗(p̂+K) = v − p̂−K = (c+ p̃+ γ)− p̂−K = p̃− p̂︸ ︷︷ ︸
≤0

+ γ −K︸ ︷︷ ︸
<0

+c < c,

So, if K− 1 ∈ {0, . . . , N − 1} opponents bid, by submitting a bid the agent gets
strictly negative expected value. By not submitting a bid, any non-leader can
ensure getting 0. Thus each non-leader has strictly dominating strategy not to
bid at p̂, which is a contradiction. Therefore q(p) = 0 for all p ≥ p̃.

Corollary 2. With ε > 0, in any equilibrium:
21As in the case of ε = 0, we have straightforward relation between these variables. If the

actual sales price is p it means that p bids were made and so

R = (c + 1)p, E(R|p > 0) =

∞∑
p=1

(c + 1)pP (p|sale) = (c + 1)E(p|p > 0).
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1. Price level max{p̃ − 1 + N,N + 1} is an upper bound of the support of
realized prices.

If p̃ > 1, then the last price where bidders could make bids with positive
probability is p̃ − 1 and if all N non-leaders make bids, we will reach the
price p̃+N−1. If p̃ = 1, then the bidders only make bids at 0 and there are
N+1 non-leaders at this stage, so the upper bound is N+1. Combination
of these two cases gives us the upper bound.

2. The game is finite and there exists a a point of time τ ≤ p̃ + N , where
game has ended with certainty at any equilibrium. This is true since at
each period when the game does not end, the price has to increase at least
by 1.

3. All non-leaders have strictly dominating strategy not to bid at prices pt ≥ p̃
and at t + 1 the game has ended with certainty. This means that we can
use backwards induction to find any SPNE.

5.1 Two-player case

The two-player case is very simple, since we have an alternating-move game,
where at t > 0, one of the players is always leading and the other (non-leader)
can choose whether to bid and become leader or pass and end the game. We
can simply solve it by backwards induction. To see the intuition, let us start by
solving a couple of backward induction steps before stating the result formally.

By Lemma 1, at prices p ≥ p̃, the non-leader would never bid. Therefore,
the continuation values values are v∗(p) = v − p, v(p) = 0, ∀p ≥ p̃, and in
particular v∗(p̃) = v − p̃ = c+ γ.

At p = p̃−1, non-leader will make a bid since v∗(p+1)−c = v∗(p̃)−c = γ > 0.
Therefore v∗(p̃− 1) = v(p̃) = 0, v(p̃− 1) = γ.

At p = p̃ − 2 > 0, non-leader will not make a bid, since continuation value
in the next round is 0 which does not cover the cost of bid. Thus v∗(p̃ − 2) =
v − (p̃− 2) = c+ γ + 2, v(p̃− 2) = 0.

We can continue this process for all t > 0 and then need to consider the
simultaneous decision at stage 0. The following Proposition 1 characterizes the
set of equilibria for two-player case.

Proposition 1. Suppose ε > 0 and N + 1 = 2. Then in any SSSPNE the
strategies q are such that

q(p) =

{
0 ∀p ≥ p̃ and ∀p = p̃− 2i > 0, i ∈ N,
1 ∀p = p̃− (2i+ 1) > 0, i ∈ N,

and q(0) is determined for each (v, c) by one of the following cases.

1. If p̃ is an even integer, then q(0) = 0.

2. If p̃ is odd integer and v ≥ 3(c+ 1), then q(0) = 1.
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3. If p̃ is odd integer and v < 3(c+ 1), then q(0) = 2 v−(c+1)
v+(c+1) ∈ (0, 1).

Proof. As argued above, by Lemma 1, q(p) = 0 for all p ≥ p̃. We want to show
that

q(p) =

{
0 ∀p = p̃− 2i > 0, i ∈ N,
1 ∀p = p̃− (2i+ 1) > 0, i ∈ N.

We will show by mathematical induction that it holds for all i ∈ N22. We already
showed the induction basis for i = 0, since then p̃−2i = p̃ and p̃−(2i+1) = p̃−1.

Assuming that the claim is true for i, we want to show that it holds for i+1.
Since q(p̃− 2i) = 0 the game ends and the leader wins instantly, so

v∗(p̃− 2i) = v − p̃+ 2i = c+ γ + 2i, v(p̃− 2i) = 0.

Also, q(p̃− (2i+ 1)) = 1, that is, the price increases by 1 with certainty and the
roles are reversed, so

v∗(p̃− (2i+ 1)) = v(p̃− 2i) = 0, v(p̃− (2i+ 1)) = v− p̃+ 2i− c = 2i+ γ.

Let p = p̃−2(i+1). Then p+1 = p̃−(2i+1), so submitting a bid would give
v∗(p̃− (2i + 1))− c = −c to the non-leader, which is not profitable. Therefore
q(p̃− 2(i+ 1)) = 0 and the leader gets

v∗(p̃− 2(i+ 1)) = v − p̃+ 2(i+ 1) = c+ γ + 2(i+ 1).

Let p = p̃− (2(i+ 1) + 1), so that p+ 1 = p̃− 2(i+ 1). Then making a bid
would give v∗(p̃−2(i+1))−c = γ+2(i+1) > 0 to the non-leader, which means
that it is profitable to make a bid.

To complete the analysis, we have to consider t = 0, where p = 0 and both
players are non-leaders simultaneously choosing to bid or not. In this stage,
there three cases to consider.

First consider the case when p̃ is an even integer, ie p̃ = 2i+2 for some i ∈ N.
Then 2 = p̃− 2i and 1 = p̃− (2i + 1), so we get the strategic-form stage game
in the Figure 5. In this game both players have strictly dominating strategy to

B P
B 1

2 (2i+ γ − c), 1
2 (2i+ γ − c) −c, 2i+ γ

P 2i+ γ,−c 0, 0

Figure 5: Period 0, case when p̃ is even

pass, ie q(0) = 0. That is, the unique SPNE in the case when p̃ is even, is the
one where the seller keeps the object.

Suppose now that p̃ is odd number, ie p̃ = 2i + 1, so that 1 = p̃ − 2i and
2 = p̃− (2i− 1). Then we get strategic form in the Figure 6

22The claim specifies only q(p) when p > 0, so actually we do not need to do it for all i ∈ N,
but it does not affect the proof.

16



B P
B γ

2 + i− 1− c, γ2 + i− 1− c 2i+ γ, 0
P 0, 2i+ γ 0, 0

Figure 6: Period 0, case when p̃ is odd

Note that 2i+γ = p̃−1+γ = v−c−1, so 1
2 (2i+γ−2)−c = 1

2 (v−3(c+1)).
The sign of this expression is not determined by assumptions, so we have to
consider two cases.

If v ≥ 3(c + 1), then bidding at round 0 is dominating strategy for both
players, ie q(0) = 1. Both players will submit a bid at round 0, and the one
who will be the non-leader will submit another bid after that. This means that
in total players make 3 bids and the price ends up to be 3. This is where the
condition v ≥ 3(c+ 1) comes from.

If v < 3(c+ 1), then there is a symmetric MSNE23, where both bidders bid
with probability q ∈ (0, 1), where q is determined by

q

(
1
2

(2i+ γ − 2)− c
)

+ (1− q)(2i+ γ) = 0 ⇐⇒

q(0) =
2(2i+ γ)

2c+ 2 + 2i+ γ
= 2

v − (c+ 1)
v + (c+ 1)

∈ (0, 1).

Observation 3. Some observations regarding the equilibria in the two-player
case.

1. Equilibrium outcome are very sensitive to seemingly irrelevant detail —
is p̃ even or odd.

2. Also, in a realistic case when v ≥ 3(c + 1), the equilibrium collapses in a
sense that E(R|p > 0) = 3(c+ 1), which can be much lower than v.

3. In a special case when p̃ is an odd integer and v < 3(c + 1), we get the
results similar to ε = 0 case: P (p > 0) ∈ (0, 1), E(R|p > 0) = v, v(0) = 0.

In this equilibrium the players submit bids with positive probabilities and
hope that the other does not submit a bid. But if she does, players actually
prefer to be non-leaders, since at price p = 2, non-leader submits one more
bid and the game ends at p = 3. Therefore P (0) > 0, P (1) > 0, P (2) =
0, P (3) > 0, P (p) = 0,∀p ≥ 4.

23There are also two asymmetric pure-strategy NE in the subgame, (P, B) and (B, P ),
where one player makes exactly one bid, so the revenue is c + 1 and the value for this bidder
is v − (c + 1).
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5.2 More than two players

In N + 1-player case (for arbitrary N ≥ 2) the discussion is similar to previ-
ous, but at each round we have 2 or more non-leaders choosing to bid or not
simultaneously. To see how an equilibrium looks like, consider the Example 1.

Example 1. Let N + 1 = 3, v = 4.1, c = 2, and ε > 0. The unique SSSPNE for
this game is given in the Table 2. Since q(0) ∈ (0, 1), the expected utility for all

p q(p) v∗(p) v(p) P (p) P (p|p > 0)
0 0.2299 0 0.4567
1 0.0645 2.7129 0 0.358 0.6588
2 0 2.1 0 0.1715 0.3157
3 0 1.1 0 0.0139 0.0255
4 0 0.1 0 0 0

Table 2: Example 1, solution

players is v(0) = 0 and expected revenue for the seller E(R|p > 0) = v = 4.1.
Note that ex-ante expectation of the sales price is going to be non-trivial. In

fact, with 2.5% probability we observe price 3, which implies revenue 3(2+1) =
9, which is significantly higher than 4.1. From this, c+ 3 = 5 > 4.1 = v is paid
by the winner and both losers will pay 2.

By Lemma 1 in any game q(p) = 0,∀p ≥ p̃. When we take p = p̃ + K for
K = 0, 1, . . . , then q(p̃+K) = 0 and

v∗(p̃+K) = v− (p̃+K) = v− c− p̃+ c−K = c+ γ −K, v(p̃+K) = 0.

So, we can consider the rest of the game to be finite and solve it using backwards
induction. Take p ∈ {0, . . . , p̃ − 1}. If p > 0, there are N non-leaders and if
p = 0, there are N + 1. Denote the number of non-leaders by N̄ . Then one of
the following three situations characterizes q(p), v∗(p), and v(p).

First, a stage-game equilibrium where all N̄ non-leaders submit bids with
certainty. In this case q(p), v∗(p), and v(p) are characterized by the three equal-
ities in conditions (C1). This is an equilibrium if none of the non-leaders wants
to pass and become non-leader at price p+ N̄ − 1 with certainty, which gives us
the inequality condition in (C1).

Conditions 1 (C1). q(p) = 1, v∗(p) = v(p+ N̄), and

v(p) =
1
N̄
v∗(p+ N̄) +

N̄ − 1
N̄

v(p+N)− c ≥ v(p+ N̄ − 1).

Secondly, there could be a stage-game equilibrium where all N̄ non-leaders
choose to pass. This is characterized by (C2).

Conditions 2 (C2). q(p) = 0, v∗(p) = v − p, and v(p) = 0 ≥ v∗(p+ 1)− c.
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Finally, there could be a symmetric mixed-strategy stage-game equilibrium,
where equilibrium, where all N̄ non-leaders bid with probability q ∈ (0, 1). This
gives us (C3).

Conditions 3 (C3). 0 < q(p) < 1,

v(p) =
N̄−1∑
K=0

(
N̄ − 1
K

)
qK(1−q)N̄−1−K

[
1

K + 1
v∗(p+K + 1) +

K

K + 1
v(p+K + 1)

]
−c

=
N̄−1∑
K=1

(
N̄ − 1
K

)
qK(1− q)N̄−1−Kv(p+K),

v∗(p) = (1− q)N̄ (v − p) +
N̄∑
K=1

(
N̄

K

)
qK(1− q)N̄−Kv(p+K).

Note that every equilibrium each q(p) must satisfy either (C1), (C2), or (C3)
and therefore an equilibrium is recursively characterized. However, nothing is
saying that the equilibrium is unique. In Appendix C we have example, where
at p = 2, each of the three sets of conditions gives different solutions and so there
are three different equilibria. Moreover, in (C3) the equation characterizing q is
N̄ − 1’th order polynomial, so it may have up to N̄ − 1 different solution which
could lead to different equilibria.

Theorem 2. In case ε > 0, there exists a SSSPNE q : N → [0, 1], such that q
and the corresponding continuation value functions are recursively characterized
(C1), (C2), or (C3) at each p < p̃ and q(p) = 0 for all p ≥ p̃. The equilibrium
is not in general unique.

Proof. N+1 = 2 is already covered in Proposition 1 and is a very simple special
case of the formulation above.

If N + 1 > 2, then the formulation above describes the method to find
equilibrium q. The conditions (C1), (C2), and (C3) are written so that there
are no profitable one-stage deviations. To prove the existence we only have
to prove that there is at least one q that satisfies at least one of three sets of
conditions.

At each stage, we have a finite symmetric strategic game. Nash (1951)
Theorem 2 proves that it has at least one symmetric equilibrium24. Since there
conditions are constructed so that any mixed or pure strategy stage-game Nash
equilibrium would satisfy them, there exists at least one such q.

Finally, Appendix C gives a simple example where the equilibrium is not
unique.

24His concept of symmetry was more general — he showed that there is an equilibrium that
is invariant under every automorphism (permutation of its pure strategies). Cheng, Reeves,
Vorobeychik, and Wellman (2004) point out that in a finite symmetric game this is equivalent
to saying that there is a mixed strategy equilibrium where all players play the same mixed
strategy. They also offer a simpler proof for this special case as Theorem 4 in their paper.
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Corollary 3. With ε > 0, in any SSSPNE, we can say the following about
E(R|sale).

1. E(R|sale) ≤ v,

2. if q(p) < 1,∀p, then E(R|sale) = v,

3. In some games in some equilibria E(R|sale) < v.

Proof.

1. Similarly to the proof of Corollary 1, the aggregate expected value to the
players must be equal to v minus the aggregate payments, which is the
sum of p and costs pc. The revenue to the seller is exactly the sum of all
payments, so

(N + 1)v(0) = v − E(p+ pc|p > 0)v − E(R|sale).

Players’ strategy space includes option of always passing, which gives 0
with certainty. Therefore in any SSSPNE, v(0) ≥ 0, so E(R|sale) ≤ v.

2. If q(p) < 1 for all p, then this mixed strategy puts strictly positive proba-
bility on the pure strategy where the player never bids. This pure strategy
gives 0 with certainty and so v(0) = 0.

3. If q(p) = 1 for some p, then the previous argument does not work, since the
player does not put positive probability on never-bidding pure strategy.

To prove the existence claim, it is sufficient to give an example. We already
found in previous subsection that in N + 1 = 2 player case, if p̃ is odd and
v > 3(c + 1), then q(0) = 1 and E(R|p > 0) = 3(c + 1) < v. Example in
Appendix C gives a more complex equilibrium (details are in the Table 3)
where q(0) ∈ (0, 1), q(1) = 0, but q(2) = 1 and E(R|p > 0) = 8.62 < 9.1 =
v.

The following lemma gives restriction how often the players can pass. It
shows that there cannot be two adjacent price levels in {1, . . . , p̃}, where none
of the bidders submits a bid. Lemma 1 showd that p̃ is the upper bound of
the prices where bidders may submit bids. Lemma 2 says that at p̃− 1 players
always bid with positive probability, so that it is the least upper bound.

Lemma 2. With ε > 0, in any SSSPNE, @p̂ ∈ {2, . . . , p̃} st q(p̂−1) = q(p̂) = 0.
In particular, q(p̃− 1) > 0.

Proof. Suppose ∃p̂ ∈ {2, . . . , p̃} such that q(p̂ − 1) = q(p̂) = 0. Since q(p̂) = 0,
the game ends there with certainty and therefore v∗(p̂) = v − p̂.

q(p̂ − 1) = 0, so the game ends instantly and all non-leaders get 0. By
submitting a bid at p̂ − 1 a non-leader would become leader at price p̂ with
certainty. So the equilibrium condition at p̂− 1 is

0 ≥ v∗(p̂)− c = v − p̂− c ⇐⇒ p̂ ≥ v − c = p̃+ γ > p̃.
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This is a contradiction with assumption that p̂ ≤ p̃. Since q(p̃) = 0 by Lemma
1, this also implies that q(p̃− 1) > 0.

The following proposition says that, conditional on the object being sold,
very high prices are reached with positive probability. In fact, with additional
condition γ < (N − 1)c, the upper bound of possible prices is reached with
positive probability. This condition is easily satisfied in any real applications
since N ≥ 2 and in general the bid cost is higher than bid increment, so that
c > 1 > γ.

Proposition 2. Let ε > 0, fix any SSSPNE where the object is being sold
with positive probability, and let p∗ be the highest price reached with strictly
probability. Then

1. p̃ ≤ p∗ ≤ max{p̃+N − 1, N + 1},

2. If γ < (N − 1)c, then p∗ = max{p̃+N − 1, N + 1}.

Proof.

1. By Corollary 2, p∗ ≤ max{p̃+N − 1, N + 1}.
Since p∗ is reached with positive probability and the higher prices are never
reached, q(p∗) = 0. Equilibrium condition for this is v∗(p∗ + 1) − c ≤ 0.
When arriving to any p > p∗, the game ends with certainty, so in particular
at p∗ + 1 we have v∗(p∗ + 1) = v − p∗ − 1. This gives p∗ ≥ v − c − 1 =
p̃− (1− γ) > p̃− 1. Since p∗ and p̃ are integers, this implies p∗ ≥ p̃.

2. First, when p̃ = 1, then the last price where bidders submit bids is 0 and
in this case they always do it with positive probability, so p∗ = N + 1 =
max{p̃+N − 1, N + 1}.
Suppose now that p̃ > 1, so that max{p̃ + N − 1, N + 1} = p̃ + N − 1.
This can only be true if P (p∗ −N |sale) > 0 and q(p∗ −N) > 0.

First, look at case q(p∗ −N) < 1. This would mean that P (p̃− 1|sale) >
0 and by Lemma 2 q(p̃ − 1) > 0, so P (p̃ − 1 + N |sale) > 0, which is
contradiction with p∗ < p̃ − 1 + N . Therefore q(p∗ −N) = 1, so all non-
leaders submit bids, knowing that all others do the same and the price
rises to p∗ with certainty. This can be an equilibrium action if

1
N
v∗(p∗) +

N − 1
N

v(p∗)− c ≥ v(p∗ − 1).

Since p∗ ≥ p̃, the game ends instantly at this price and therefore v∗(p∗) =
v − p∗ and v(p∗) = 0. Finally, v(p∗ − 1) ≥ 0 (since player can always
ensure at least 0 payoff by not bidding). This gives the condition

v −Nc ≥ p∗ ≥ p̃ = v − c− γ ⇐⇒ γ ≥ (N − 1)c.

This contradicts the assumption made in the proposition.
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Corollary 4. When the object is sold and condition γ < (N − 1)c is satisfied,

1. R > v with positive probability,

2. R < v with positive probability

So, we have shown in previous Proposition that sometimes the object is
sold at very high prices, and in this Corollary that sometimes the seller earns
positive profits and sometimes incurs losses. This means that the auction has
the stylized properties described in Section 2.

Proof.

1. By the previous proposition, there is positive probability that the object
is sold at price p∗ ≥ p̃ + 1 = v − c + (1 − γ). Therefore, when object is
sold at price p∗, the revenue is

R = (c+ 1)p∗ ≥ (c+ 1)[v− c+ (1−γ)] > v ⇐⇒ v

c+ 1
>
c− (1− γ)

c
,

which holds as strict inequality, since v > c+ 1 and γ < 1.

2. Since E(R|sale) ≤ v and R > v with strictly positive probability, it must
be also R < v with strictly positive probability.

With ε > 0 the equilibria are non-trivially related to parameter values. The
number of equilibria may increase or decrease as parameter values changes,
and the equilibrium outcomes may are generally affected non-monotonically.
However, we can make some observations regarding the parameter values in the
limits.

Observation 4.

1. If c → 0, then in the limit we would get a version of Dynamic English
auction. Perhaps contrary to the intuition this auction generally ends
very soon. The general intuition of this observation is the following.

Suppose N+1 = 3, q(p+1) < 1, and q(p+2) < 1; v∗(p+1) > 0, v∗(p+2) >
0, v(p + 1) = v(p + 2) = 0 and c → 0. Then at price p there is certainly
a stage-game equilibrium where q = 1 since v∗(p+ 2)− c > v(p+ 1) = 0.
There are no equilibria q < 1, since player cannot be indifferent between
positive expected value from bid and 0 from no bid. For this reason there
will be relatively many prices where q(p) = 1. Now, if q(p) = 1 then
being leader at p is in general worse than being non-leader, so at p − 1
the players have lower incentives to bid. In many equilibria this leads to
situation where E(R|sale)� v.
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To put it in the other words, when cost of bid is small, then whenever
there is positive expected value from bidding, players compete heavily,
which drives down the value to the bidders and therefore there are low
incentives to bid in earlier rounds.

2. If c → v − 1, but still c < v − 1 (the upper bound for c), then the game
gives positive utility to the bidders only if there is exactly one bid. q = 0
will not be an equilibrium, since lone bidder would get positive utility.
Also, at p > 0 no-one bids. Therefore the unique equilibrium is such that
q(0) is a very small number and q(p) = 0,∀p > 0. Then E(R|sale) = v,
but probability of sale is very low.

As mentioned above, if c ≥ v − 1 or equivalently, 1 ≥ v − c = p̃ + γ,
then p̃ = 0 and there can never be any bids. This is obvious, since to get
positive payoff one needs to become a leader and minimal possible cost for
this is c+ 1.

3. Increase in v means that the game is getting longer and this means that
there are more states with strategic decisions and generally more possible
equilibria and non-trivial effect on strategies and revenue.

Decrease in v has the opposite effect and as v → c + 1 we get the case
described above.

4. If N is very large, then q(p) < 1 for any p just because if q(p) = 1 this
would mean that p + N > v and so players cannot get positive value
from bidding, whereas they have to incur cost and may ensure 0 by not
bidding. Obviously, in q(p) is not always 0, since it would still be good to
be a lone bidder. So, in general we would expect to see many p’s with low
positive (and sometimes 0) values of q(p). Since q(p) < 1,∀p we would
have E(R|sale) = v.

6 Discussion

The model introduced in this paper has some interesting properties of penny
auctions. In these auctions, the outcome to the individual bidders and to the
seller is very unpredictable and varies in a large interval.

However, this kind of model is unable to replicate one property that the
practical penny auctions seem to have. As shown in Figure 2, in real auctions
the average profit margin seems to be significantly higher than zero. In penny
auctions the objects sold have well-defined market value, handing over the object
has alternative cost v to the seller. Since in the game above, the expected
revenue is less than or equal to v, it means that the seller would always be better
off by setting up a supermarket and selling the object at a posted price. This is
not a property of the auction, but a general individual rationality argument —
since individuals can always ensure at least 0 value by inactivity, it is impossible
to extract on average more than the value they expect to get. To achieve an

23



outcome where expected revenue is strictly higher than the value of the object,
we would need to add something to the model.

A trivial way to overcome (or actually ignore) the problem is to say that
the value to the seller is some vs < v = vb. It could be for example that the
suggested retail value is by far higher than the cost to the seller, but around
the value that the customers expect to get. This would obviously mean that
there are expected profits, but it does not explain why the seller would not use
alternative selling methods.

One explanation from practice seems to be that it is “Entertainment shop-
ping”. This could mean that the bidders get some positive utility from par-
ticipating, some “Gambling value” vg in addition to v if winning. Then again
vb = v+vg > vs. This could be true because winning an auction feels like an ac-
complishment. In this case this could be an increasing function of N (beating N
opponents is great). There are other possible ways to model this entertainment
value. (1) For example, modeling it as a lump-sum sum value just from partic-
ipating or (2) as a positive income that is increasing in the number of bids. (3)
Assuming that “Saving” money gives some additional happiness. Then instead
of v− p the player would have some increasing function f(v− p). If it is linear,
it is a simple transformation of previous.

Alternatively, individuals might not consider c to be at the same monetary
scale as v and p, since it is partly sunk. In practice people buy “bid packs”
with 50 or 100 bids at a time, so the story is complicated, but it is reasonable
to think that with some probability an individual has marginal cost of next
bid less than c. Suppose the bidders consider the cost of bid cb < c. Then
E(R|sale) = (c + 1)E(p|p > 0) > (cb + 1)E(p|p > 0) and 0 ≤ (N + 1)v(0) =
v − (cb + 1)E(p|p > 0), so it is possible to earn profit. There could be other
ways to affect v, p, c via linear or lump-sum changes to tell other stories.

Another approach would be to consider some boundedly rational behavior
or uncertainty in the model. A specific property of “penny auctions” seems to
be that the price increase is marginal for a bidder. We could consider a case
where individuals behave as (at least for a while) that the action is with ε = 0,
but with value shrinking as the price increases. Generally this would not be an
equilibrium in game-theoretic sense, but it might be realistic in practice and, as
shown in this paper, is computationally easier, since there is always unique and
explicitly characterized equilibrium.

Another question to consider is the reputation of players. Since in practi-
cal auctions the user name of a bidder is public, this could mean reputation
effects between the auctions and during one auction. If a player has built a
reputation of being “tough” bidder in previous auctions, since it is an all-pay
auction, it obviously affects the other bidders. Then the first thing to notice is
the fact that in this case the equilibrium is in general not symmetric. As we
argued in some cases above, there could be (and in some cases are) equilibria,
where one bidder always bids and other never bid. This means that there is
reputation-type equilibrium even without any costs of reputation building, just
some communication between bidders is enough. Of course, in the long run, it
may be profitable to invest in building reputation and therefore there could be

24



some types of behaviors to consider outside of our model.
Finally, in practice automated bids called Bid butlers are used. The system

allows bidders to specify starting and ending prices and the number of bids
the system should make on their behalf. Players can always cancel their Bid
butler and the opponents see whether bid is made using Bid butler or manually.
This may have interesting implications for the game. In most trivial way –
just assuming the bidders can start and stop their Bid butlers at any moment
of time, it would not affect the game at all, since everyone can replicate any
strategy either with Bid butler or without. But when assuming there is some
probability that the Bid butler is used while opponent is away from the game
for some positive amount of time means that it may have reputation-type effect
during the auction. By observing a bid by Bid butler, opponents update their
belief about the next move slightly, and this may change their behavior radically.

As argued here, this is only the first attempt to characterize this type of
auctions in a game-theoretic model. The next steps would involve adding some
behavioral aspects that would probably benefit form a careful empirical analysis
that would show which kind of behaviors or biases are behind of the outcomes
that cannot be replicated by a straightforward model.

Appendices

A Symmetric Stationary Subgame Perfect Nash
Equilibrium

We will now introduce formally the equilibrium concept used in this paper,
Symmetric Stationary Subgame Perfect Nash Equilibrium (SSSPNE). Denote
the vector of bids at round t by bt = (bt0, . . . , b

t
N ), where bti ∈ {0, 1} is 1 if

player i submitted a bid at period t. Denote the leader after25 round t by
lt ∈ {0, . . . , N}. The information that each player has when making a choice at
time t, or history at t, is ht = (b0, l0, b1, l1, . . . , bt−1, lt−1). The game sets some
restrictions to the possible histories, in particular to become a leader, one must
submit a bid, so btlt = 1, and the leader cannot submit a bid, btlt−1 = 0, and ht

is defined only if none of the previous bid vectors bτ is zero vector. Denote the
set of all possible t-stage histories by Ht, and the set of all possible histories,
H =

⋃∞
t=0Ht.

In this game, a pure strategy of player i is bi : H → {0, 1}, where bi(ht) = 1
means that player submits a bid at ht and 0 that the player passes. The game
has perfect recall, so by Kuhn’s theorem any mixed strategy profile can be
replaced by an equivalent behavioral strategy profile σi : H → [0, 1], such that
σi(ht) is the probability that player i submits a bid at history ht. Since it makes
notation simpler, whenever we are talking about strategies in the text, we mean

25That is the non-leader that submitted a bid at t and became the leader by random draw
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behavioral strategies. Note that by the rules of the game, at histories ht where
lt = i, player i is the leader and can only pass.

Definition 1. A strategy profile σ is Symmetric if for all t ∈ {0, 1, . . . },
for all i, î ∈ {0, . . . , N}, and for all ht = (bτ , lτ )τ=0,...,t−1 ∈ Ht, if ĥt =
(b̂τ , l̂τ )τ=0,...,t−1 ∈ Ht satisfies

b̂τj =


bτj ∀j /∈ {i, î},
bτi j = î,

bτ
î

j = i,

l̂τ =


lτ lτ /∈ {i, î},
i lτ = î,

î lτ = i,

∀τ = {0, . . . , t− 1},

then σi(ĥt) = σî(h
t).

The Symmetry assumption simply states that when we replace the identities
of two players, then nothing changes. This means that we could also call it
Anonymity assumption. Intuitively, the assumption means that given that other
N opponents make exactly the same choices and the uncertainty has realized
the same way, different players would behave identically.

Let function Li be the indicator function that tells whether player i is leader
after history ht or not,

Li(ht) = 1[i = lt], ∀i ∈ {0, . . . , N},∀ht ∈ H.

Let S be the set of states in the game and S : H → S the function mapping
histories to states. In particular, we define these as

1. If ε = 0, then S = {N + 1, N}, and

S(ht) =

{
N + 1 ht = ∅,
N ht 6= ∅.

The reason: in infinite game the price does not increase, so the only thing
players will condition their behavior is the number of active bidders, which
is N + 1 in the beginning and N at any round after 0.

2. If ε > 0, then S = {0, 1, . . . }, and

S(ht) =
t−1∑
τ=0

N∑
i=0

bτi .

That is, the total number of bids made so far or equivalently, the normal-
ized price pt. Note that we do not have to explicitly consider two cases
with two different numbers of players, since at ht = ∅ we have S(ht) = 0
and at any other history S(ht) > 0.

Definition 2. A strategy profile σ is Stationary if for all i ∈ {0, . . . , N}, and
for all pairs of histories ht = (bτ , lτ )τ=0,...,t−1 ∈ H, ĥt̂ = (b̂τ , l̂τ )τ=0,...,t̂−1 ∈ H
such that Li(ht) = Li(ĥt̂), and S(ht) = S(ĥt̂), we have σi(ht) = σi(ĥt̂).
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Stationarity assumption means that the time and particular order of bids
are irrelevant. The only two things that affect player’s action are current state
and the fact whether she is a leader or not.

Definition 3. SPNE strategy profile σ is Symmetric Stationary Subgame Per-
fect Nash Equilibrium SSSPNE if it is Symmetric and Stationary.

Lemma 3. A strategy profile σ is Symmetric and Stationary if and only if it
can be represented by q : S → [0, 1], where q(s) is the probability bidder i bids at
state s ∈ S for each non-leader i ∈ {0, . . . , N}.

Proof. Since q is only defined on states S and equally for all non-leaders, it is
obvious that it is a strategy profile that satisfies Symmetry and Stationarity, so
sufficiency is trivially satisfied.

For necessity, take any strategy profile σ = (σ0, . . . , σN ), where σi : H →
[0, 1], that satisfies Symmetry and Stationarity. Construct functions q0, . . . , qN ,
where qi : S → [0, 1] by setting

qi(S(ht)) =

{
0 ∀ht : Li(ht) = 1,
σi(ht) ∀ht : Li(ht) = 0,

∀ht ∈ H.

Our construction of S and Stationarity ensure that qi is well-defined function.
We claim that adding Symmetry means that we get qi(s) = q(s) for all i and

s ∈ S. To see this, fix any i and ht such that s = S(ht) and Li(ht) = 0. By
construction, qi(s) = qi(S(ht)) = σi(ht).

Now, fix any other non-leader, î, so that Lt̂(h
t) = 0. Construct another

history ĥt that is otherwise identical to ht, but such that i and î are swapped.
Then S(ĥt) = s (obvious for both cases) and Lî(ĥ

t) = 0. By Symmetry we have
σi(ht) = σî(ĥ

t). Therefore

qî(s) = qî(S(ĥt)) = σî(ĥ
t) = σi(ht) = qi(s).

So, if strategy profile satisfies Stationarity and Symmetry, we can greatly
simplify its representation. We can replace σ by q that is just defined for all
s ∈ S instead of full set of histories H. In the following two lemmas we show
that at least in the cases considered in this paper the solution method is also
simplified by these assumptions, since any SSSPNE can be found simply by
solving for stage-game Nash equilibria for each state s ∈ S taking into account
the solutions to other states and the implied continuation value functions.

Lemma 4. With ε > 0, a strategy profile σ is SSSPNE if and only if it can be
represented by q : S → [0, 1] where q(s) is the Nash equilibrium in the stage-game
at state s, taking into account the continuation values implied by transitions S.

Proof. Necessity: If σ is SSSPNE, then by Lemma 3 it can be represented by q
and since it is a SPNE, there cannot be profitable one-stage deviations.
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Sufficiency: By Corollary 2 any auction with ε > 0 ends not later than p̃+N .
So, although our game is (by the rules) infinite, it is equivalent in the sense of
payoffs and equilibria with a game which is otherwise identical to our initial
auction, but where after time p̃ + N the current leader gets the object at the
current price. This is finite game and checking one-stage deviations is sufficient
condition for SPNE.

Lemma 5. With ε = 0, a strategy profile σ is SSSPNE if and only if it can be
represented by q : S → [0, 1] where q(s) is the Nash equilibrium in the stage-game
at state s, taking into account the continuation values implied by transitions S.

Proof. Necessity is identical to Lemma 4. Sufficiency:26 Suppose q is Nash equi-
librium in the stage-game equilibrium at each state s. To shorten the notation
we will use the following notation: q̂0 = q(N + 1), q̂ = q(N), v̂0 is the continua-
tion value of the game at state N+1, v̂ is the continuation value of a non-leader
and v̂∗ is the continuation value of a leader at state N . By Theorem 1 we get
q̂ ∈ (0, 1), defined by (1− q̂)NΨN (q̂) = c

v , q̂0 < 1, v̂ = 0, and v̂∗ = (1− q̂)Nv.
Take any history ht 6= ∅ and individual i who is not the leader at ht. Let σi

be the strategy that ensure the highest expected value to player i at history ht.
Denote continuation value using σi at history hτ by V (hτ ) for all hτ following
ht. To shorten the notation, denote V̂ = V (ht). Suppose there exists profitable
deviation at ht. Then σi must also be profitable deviation and therefore V̂ >
v̂ = 0.

Some of the histories ht+1 following ht and i playing σi(ht) are such that
i is a non-leader. In these situations all the other players use the same mixed
strategy in all the continuation paths, so all payoff-relevant details are the same
as at ht. This means that at such histories ht+1, it must be V (ht+1) = V̂ .
It cannot be higher, since V̂ is maximum, and it can’t be lower, since i could
improve V (ht) by changing strategy starting from this ht+1.

Other histories ht+1 following following ht, σi(ht) are the ones where i is the
leader. Being the leader at ht+1, two things can happen to i’s payoff. First,
game may end at ht+1 and player i gets v. This happens with probability
(1− q̂)N as argued above. Secondly, i can become a non-leader at history ht+1

following ht+1. For the same reason as above, V (ht+2) = V̂ for all such histories.
Therefore in histories ht+1 where i is the leader,

V (ht+1) = (1− q̂)Nv + (1− (1− q̂)N )V̂ .

The expected value at ht is the expectation over all the continuation values
V (ht+1) following mixed action σi(ht) minus the expected bid cost. So, we can
write

V̂ = V (ht) =
∑

ht+1|ht,σi(ht)

P (ht+1|ht, σi(ht))V (ht+1)− cσi(ht)

26Note that since the game does not satisfy continuity at infinity, checking one-stage devi-
ations may not be sufficient for SPNE.
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Using the values V (ht+1) derived above and the fact that conditional on sub-
mitting a bid, the probability of becoming the leader at t+ 1 is ΨN (q̂). So, the
probability of become the leader is σi(ht)ΨN (q̂), which gives us

V̂ = σi(ht)ΨN (q̂)[(1− q̂)Nv+(1− (1− q̂)N )V̂ ]+[1−σi(ht)ΨN (q̂)]V̂ −cσi(ht)

= cσi(ht) + σi(ht)ΨN (q̂)[1− (1− q̂)N − 1]V̂ + V̂ − cσi(ht) ⇐⇒

σi(ht)c
V̂

v
= 0.

By assumptions c > 0, V̂ > 0, and therefore σi(ht) = 0. What we got is that
by not bidding at ht and at any following ht+1 and so on the player can ensure
strictly positive expected payoff V̂ , which is impossible since the only way to
get positive value is to be a leader and for this necessary condition is to bid. So
there cannot be profitable deviations at any ht 6= ∅.

We showed that at any history that follows h0, always playing q̂ ensures
highest possible payoffs. Therefore at round 0 if there is profitable deviation,
it must be one-stage deviation. But this is not possible, since we assumed that
q̂0 is Nash equilibrium in the stage-game, taking into account the continuation
values from q̂ in the following periods.

B Properties of ΨN(q)

The following Lemma helps us to characterize the set of equilibria and its prop-
erties in case when ε = 0. Let

ΨN (q) =
N−1∑
K=0

(
N − 1
K

)
qK(1− q)N−1−K 1

K + 1
.

Lemma 6. Let N ≥ 2. Then

1. ΨN (q) is strictly decreasing in q ∈ (0, 1).

2. limq→0 ΨN (q) = 1, limq→1 ΨN (q) = 1
N .

3. ΨN (q) > ΨN+1(q) for all q ∈ (0, 1).

Proof.

1. ΨN (q) is a differentiable function of q, so it is sufficient to show that
dΨN (q)
dq < 0,∀q ∈ (0, 1). Differentiation and reordering of terms gives

dΨN (q)
dq

=
N−1∑
K=1

(N − 1)!K
(N − 1−K)!(K + 1)!

qK−1(1− q)N−(K+1)

−
N−2∑
K=0

(N − 1)!(N − (K + 1))
(N − 1−K)!(K + 1)!

qK(1− q)N−(K+1)−1].
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=
N−1∑
K=1

(N − 1)!qK−1(1− q)N−(K+1)

(N − 1−K)!K!

[
K

K + 1
− N −K
N −K

]
.

K
K+1 < 1 = N−K

N−K , so all terms in the sum are strictly negative for any
q ∈ (0, 1).

2. Intuitively it is obvious: if other bidders almost certainly do not bid,
probability of becoming the leader is close to 1, whereas when they almost
certainly bid, each is becoming the leader with equal probability 1

N .

Formally, as q → 0, all terms of ΨN (q) where q is in positive power
disappear, so only the one corresponding to K = 0 survives. Thus

lim
q→0

ΨN (q) = lim
q→0

(N − 1)!
(N − 1)!0!

q0(1− q)N−1

1
= 1.

Similarly, as q → 1, all terms where (1− q) is in positive power disappear,
so only the one where K = N − 1 survives and we get

lim
q→1

ΨN (q) =
(N − 1)!

0!(N − 1)!
1

N − 1 + 1
=

1
N
.

3. Want to show that ∆N (q) = ΨN (q)−ΨN+1(q) > 0,∀q ∈ (0, 1), where

∆N (q) =
N−1∑
K=0

(N − 1)!qK(1− q)N−1−K

(N −K)!(K + 1)!
(qN −K)− qN

N + 1
.

We prove it by first transforming the sum in a way that we get expectation
of linear function over Binomial distribution with parameters (q,N + 1),
since we know that expectation of the variable itself is q(N + 1) and
expectation of constant is constant. The expression that remains after this
manipulation depends only on q and N and is easy to analyze directly.

First, change of variables in the sum, L = K + 1

∆N (q) =
N∑
L=1

(N − 1)!qL−1(1− q)N−L

(N + 1− L)!L!
(qN + 1− L)− qN

N + 1

=
1

N(N + 1)q(1− q)

N∑
L=1

(N + 1)!qL(1− q)N+1−L

(N + 1− L)!L!
(qN+1−L)− qN

N + 1
.

Finally, we need to add and subtract terms with L = 0 and L = N + 1

∆N (q) =
1

N(N + 1)q(1− q)

N+1∑
L=0

(N + 1)!qL(1− q)N+1−L

(N + 1− L)!L!
(qN +1−L)

− (1− q)N+1(qN + 1)
N(N + 1)q(1− q)

− −qN+1(1− q)N
N(N + 1)q(1− q)

− qN

N + 1
.
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Using the properties of Binomial distribution and rewriting gives

∆N (q) =
qN + 1− q(N + 1)
N(N + 1)q(1− q)

− (1− q)N+1(qN + 1)
N(N + 1)q(1− q)

=
1− (1− q)N (qN + 1)

N(N + 1)q
.

Therefore, to show that ∆N (q) > 0 for all q ∈ (0, 1), it is sufficient to show
that 1 − (1 − q)N (qN + 1) > 0. Note that when q = 0 this expression is
equal to 0, and it is strictly increasing in q

d

dq
[1− (1− q)N (qN + 1)] = qN(N + 1)(1− q)N−1 > 0, ∀q ∈ (0, 1).

C A penny auction with multiple equilibria

Let N + 1 = 3, v = 9.1, c = 2, ε > 0. In this case, there are three SSSPNE, in
Tables 3, 4, and 5 (which differ by actions at p = 2).

p q(p) v∗(p) v(p) P (p) P (p|p > 0)
0 0.509 0 0.1183
1 0 8.1 0 0.3681 0.4175
2 1 0 0 0 0
3 0.6996 0.5504 0 0.0119 0.0135
4 0 5.1 0 0.4371 0.4958
5 0.4287 1.3381 0 0.0211 0.0239
6 0.0645 2.7129 0 0.0277 0.0314
7 0 2.1 0 0.0157 0.0178
8 0 1.1 0 0.0001 0.0001
9 0 0.1 0 0 0

Table 3: Equilibrium with q(2) = 1
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p q(p) v∗(p) v(p) P (p) P (p|p > 0)
0 0.5266 0 0.1061
1 0 8.1 0 0.354 0.3961
2 0.7249 0.5371 0 0.0298 0.0333
3 0.6996 0.5504 0 0.0273 0.0306
4 0 5.1 0 0.3344 0.3741
5 0.4287 1.3381 0 0.0484 0.0542
6 0.0645 2.7129 0 0.0636 0.0711
7 0 2.1 0 0.036 0.0403
8 0 1.1 0 0.0003 0.0003
9 0 0.1 0 0 0

Table 4: Equilibrium with q(2) = 0.7249 ∈ (0, 1)

p q(p) v∗(p) v(p) P (p) P (p|p > 0)
0 0 0 1
1 0.7473 0.5174 0 0
2 0 7.1 0 0
3 0.6996 0.5504 0 0
4 0 5.1 0 0
5 0.4287 1.3381 0 0
6 0.0645 2.7129 0 0
7 0 2.1 0 0
8 0 1.1 0 0
9 0 0.1 0 0

Table 5: Equilibrium with q(2) = 0
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