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1 Proof of Lemma 1

Lemma 1. Utility v is not asymptotically risk-loving if and only if there exists € > 0 such
that v(t) < v(0) + et for all t < 0.

Proof The result follows from three observations:

1. v is not asymptotically risk-loving if and only inf lim; , %v(t) # 0, which is

equivalent to lim;_, . %_t”(t) > 0.
2. By the monotonicity of the utility function, v(0) > v(¢) for all t < 0, so %}Um >0
for all t < 0.

3. Finally, lim;_,q “(0:”(” =v'(0) > 0 by assumption.

Combining these three observations proves that v is not asymptotically risk-loving if and
only if there exists € > 0 such that
u(f,0) —u(6,1)
—t

> = u(0,t) <ulf,0)+et V<0 (1)

2 Proof of Lemma 2
Lemma 2. Utility v is asymptotically risk-loving
1. df limy, V' (t) =0 or

2. if the utility function is bounded from below or
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3. if the second derivative with respect to transfer v"(t) exists and either

" 1
im (6, 1) >0 or lim - (6.1)
t——o0 UI(Q,t) t——o0 U’(87t)

<0 (2)

(i.e., asymptotically risk-loving according to the Arrow-Pratt relative or absolute risk
measure).

Proof of Lemma 2|

1. By assumption, for any ¢ > 0, there exists ¢ < 0 such that v/'(¢) < ¢ for all ¢t < {.
Therefore, for all t < #, 0 < v(t) — v(t) < e(f — t); thus,

v(t) - v(t) - v(t) —5f+6

t t t

(3)
- 1 - - Lo(f) —
so that lim,, . ;v(t) € [0,¢]. By taking e — 0, lim;,_ ;v(t) = 0.

2. If there exists v < 0 such that v(t) > v for all ¢, then

1 1
0< lim -o() < lim —v=0. (4)

T t——oo t t——oo

t:,ﬁ(g) =r*>0and fix 0 < a < r*. By Lemma , there

exist £ < 0, ¢; > 0, and ¢, € R such that for all t < £, v(t) > —c;(—)'"* 4 ¢,. Thus,
0 < to(t) < —ei(—t)™* + 2, which implies that lim_,_ tv(t) = 0.

3. Suppose first that lim, ., ., —

Finally, lim;_,_ —1;,,,((:)) =r < 0 implies lim;_, _ —% = limy_,_o tr = 00 > 0.
O
Lemma 3. Suppose r* = lim;_,_ —%.
1. For any a < r* < 1, there existt <0, ¢; > 0, and ¢ € R such that
v(t) > —c1 (=) + ey, V< i (5)
2. For any 1 > a > r*, there exist t <0, ¢; > 0, and ¢ € R such that
v(t) < —c1 (=) + ey, VE<E (6)

Proof of Lemma Bl Suppose r* > «. Following from the definition of r*, there exist ¢

such that —t;’,ﬂ(g) > « or equivalently Zl,l((tt)) > —% forall t < t. Therefore,
V' (1) to"(z) t N
1 :/ de > —aln- = () <e(l—a) (=), 7
nU’(t) g U’(l‘) T & nt ’U( ) Cl( Oé)( ) ( )
__J@® n
where ¢; = eI 0. Now for all ¢ < ¢,
v(f) —o(t) < —ar [(=D)7 = (=)' = 0(t) > —a(-t)" + o, (8)

where ¢y = v(f) — ¢, (—£)'~®. Proof for a > r* is analogous.

]



3 Cumulative prospect theory preferences

Theorem 3. Suppose that the bidders are asymptotically risk-loving cumulative prospect
theory agents. Then there exists a non-random winner-pays auction where almost all types
of buyers pay unboundedly large expected transfers.

Proof Again, I divide the proof into two lemmas: First, Lemma [4] shows that for any
T-mechanism, I can construct the function v that makes truth-telling optimal for all
types. Second, Lemma [5| shows that if buyers are asymptotically risk-loving, then with
sufficiently large 7', the T-mechanism ensures arbitrarily large expected transfers from

each type and, therefore, unbounded profits.
[

Lemma 4. For a big T, there exists function vy such that bidding one’s own value is an
equilibrium in T-mechanism.

Proof Fix an arbitrary T-mechanism. The expected utility for a bidder with value 6;
who bids ¢! il]

U(6;16:) = w (G(6;) — G(v(67)))u(Bi, =T) + w™ (G(y(67))u(6:, 0), (9)

. . 1 ) . dU(6.]6,)
The condition for the optimality of bidding one’s own type is B

= 0, which
0,=0;

gives the condition
dw™(G(0;) — G(v(6:)))
db;

dw* (G(v(6;)))
do;

When T is sufficiently large, the necessary condition Equation (10]) is also the sufficient
condition under which reporting one’s own value is the unique maximizer of expected
utility because if v satisfies Equation , then

U (016:) _ dw* (G(y(0)))) [—u(b;, T

) /
do;do, a0, (0,0) ug(6;, =T) +ug(6;,0)| >0, V6,06, (11)

as long as T is large enough that u (0, T) < OEI

It remains to show that there ex1sts a function « : [0,0] — [0, 0] that satisfies Equa-
tion . As @ is strictly increasing, this is equivalent to finding a function H : [0, 0] —
[0, 1] where H(0;) = G(v(6;)) satisfies written as an ODE

w= (G(0;) — H(0;))[—u(b:, =T)]g(6:)
w= (G(0:;) — H(0:))[—u(0;, =T)] +w*(H(6;))u(0;,0)’

such that H(@) = 0 and 0 < H(¢;) < G(6;) for all 6;. As u, G, wt, and w™ are
differentiable in 6;, Picard-Lindelof theorem implies that the problem has a solution (in
fact a unique solution).

H'(0) = (12)

1T assume here that T is big enough that paying T for the object falls into the losses domain.

>0 VO, <,
’ 2
2 Note that this implies that dUg;i,_Ie ) — dU%,le J 4 fe dd9 d9 =0 0,=46,
<0 VO >0,.



Therefore, for any T-mechanism with sufficiently large T, there exists a (unique)
function ~ with which truth-telling is optimal for each buyer, assuming that other buyers
bid their types.

O

Lemma 5. Iflimy_,o w™ (5)u(0%,T) for each c > 0, then using T'-mechanisms, the seller
can ensure

1. unboundedly large expected transfers from each type who receives the object with
positive probability,

2. unbounded expected profits.
Proof I need to show that the expected transfer can be made arbitrarily large from all
types 6; > 0*. The expected transfer from type 6;, denoted by ¢(6;), is
0;
10 = [ | TAC(-) = TIGE:) ~ C((6) (13)

where the function ~ is characterized by Equation in the proof of Lemma . Suppose
that the claim does not hold for some type 6;; that is, limy_, t(0;) = ¢ < oo. Then

limy o0 [G(60:) — G((6:)) — £] = 0.
Notice that by assumptions, for any sufficiently large T,
w(6;,0) > u(0,0) >0 > u(b;, =T) > u(@, =T). (14)

Therefore, implies that for all 8 > 6*,

dw”(G(6:) — G(v(6:)) dwt (G(1(6:)))
do, 0,-T)] 2 ==l 0). (15)

Integrating both sides from € to #; and using the fact that G(0) = G(v(8)) = 0 gives
[—u(0, =T)Jw™ (G(6:) — G(v(6:))) = u(8, 0)w™ (G(7(6:)))- (16)

Note that limy_,o (8, 0)w™ (G(v(6;))) > 0 because u(f,0) > 0 and limy_,o, G(7(6;)) =
0, which would imply that limz_, t(6;) = co. The limit of the left-hand side of is

lim [—u(8, =T)|w™ (G(6;) — G(4(6))) = — lim w™ (;) w6, ~T)=0  (17)

T—o0 T—oo

as the agents are asymptotically risk-loving. This is a contradiction.
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