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Abstract

We parameterize commitment in leader-follower games by letting the leader publicly

choose her action set from a menu of options. We fully characterize for a large class of

settings the set of equilibrium outcomes obtained when varying the degree of commit-

ment that the leader has. We identify conditions under which giving more commitment

power to the leader could end up making her worse off. Moreover, with partial commit-

ment, the follower might obtain a larger payoff than the leader even in settings where

the latter possesses a first-mover advantage under full commitment. We explore the

implications of our analysis for oligopolies.

JEL: C72, D43, D82

Keywords : commitment, sequential games, Stackelberg competition, robustness

1 Introduction

The Stackelberg model of commitment (von Stackelberg (1934)) has had a formidable im-

pact on the development of industrial organization, political economy, international trade,

and other areas of economic theory. A part of this impact is arguably explained by the sheer

simplicity of the model, which, in turn, can be traced back to the leader’s ability to commit

exactly to the action of her choice. Yet this “full-commitment” assumption of the Stackelberg

model lacks realism when, as often in applications, small adjustments to the leader’s initial
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action are feasible. In oligopolistic contexts for instance (Spence (1977), Dixit (1980)), capac-

ity investments could have multiple uses. For example, machines and employees can often be

used in the production of more than just one good. The purpose of the present paper is (i)

to provide a model enabling us to parameterize the degree of commitment in leader-follower

environments, and (ii) to describe the set of outcomes thus obtained as a function of the base

game considered (i.e., to elicit the “limits of commitment”).1

The model we propose is simple. In the first period, the leader publicly selects a subset of

actions from a given cover of her action space; this exogenous cover parameterizes the game

considered. In the second period, leader and follower simultaneously choose an action, the

leader having to pick an action from the cover element that she selected in the first period. We

say that an outcome is plausible if it is a subgame perfect equilibrium outcome of the game

induced by some cover of the leader’s action space. By taking said cover to be the power set

of the leader’s action space, we effectively retrieve the Stackelberg model. When this cover

only contains the action space itself, the first period becomes moot, and we then retrieve the

simultaneous-move game associated with the base game considered.

To keep the analysis tractable, we restrict attention throughout to settings in which the

action spaces can be represented by compact intervals of the real line. The paper’s primary

goal is to characterize the entire set of plausible outcomes, as well as three prominent subsets

of plausible outcomes: the subset of outcomes that remain plausible under interval covers

(i.e., covers made up of intervals only), the subset of outcomes which remain plausible under

partitions, and the subset of outcomes which remain plausible under interval partitions.

A possible conjecture would be that the plausible actions of the leader coincide with the

convex hull of her actions under full and no commitment, henceforth respectively referred to as

“Stackelberg” and “Cournot” actions. As we show, however, generally the plausible actions

of the leader are neither contained in the aforementioned convex hull nor do they contain

it. We start by fully characterizing the sets of outcomes that are plausible under interval

partitions and covers, respectively. In settings with a unique Cournot action, these sets take

a very simple form: the actions of the leader which are plausible under interval partitions and

covers both coincide with the upper contour set of the unique Cournot action with respect to

the leader’s indirect utility function.2 With multiple Cournot actions, on the other hand, the

aforementioned sets typically differ. For instance, an action of the leader is plausible under

1An “outcome” here means a pair of actions, one for the leader and one for the follower.
2The leader’s indirect utility refers to the payoff of the leader given that the follower best-responds to the

action which the leader takes.

2



interval covers if it is contained in the upper contour set of any Cournot action. However, for

interval partitions the previous condition is generally insufficient: an action of the leader is

plausible under interval partitions if it is contained in the upper contour sets of all Cournot

actions. We then show that when the reaction curves are sufficiently steep, the set of plausible

outcomes is strictly larger than the set of outcomes that are plausible under interval covers.

A first implication of our results is that the leader might prefer less commitment power

rather than more. A second implication is that settings traditionally associated with a first-

mover advantage (Gal-Or (1985)) might in fact exhibit a second-mover advantage under partial

commitment. The following example illustrates both of these points in a textbook duopoly

setting.3

Leader’s
profit

Leader’s
quantity

xC xS

U(xC)

1
8

1
3

Figure 1: Duopoly example

Example. Leader and follower are two identical firms. In Figure 1, the quantity which the

leader produces is represented on the horizontal axis: the leader’s action space is given by

X :=
[
0, 5

3

]
. The black curve depicts the graph of the leader’s indirect utility function (U).

The Stackelberg and Cournot quantities are denoted by xS and xC , respectively. Next, let

I :=
(
1
8
, 1
3

]
, and consider the cover K of the leader’s action space given by K :=

{
I,X \ I

}
.

The following strategies constitute a subgame perfect equilibrium of the game induced by K:

3In this example, the profit of the leader when leader and follower produce respectively x and y is given by
x(1− y)− 3

5x
2; the corresponding profit of the follower is y(1− x)− 3

5y
2.
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� on the equilibrium path, the leader commits to producing a quantity in I, and subse-

quently chooses to produce 1
3
(the blue curve indicates the leader’s payoff conditional

on the follower best-responding to 1
3
);

� off the equilibrium path, the leader produces 1
8
(the green curve indicates the leader’s

payoff conditional on the follower best-responding to 1
8
);4

� the follower chooses to produce 5
9
whenever the leader commits to I, and 35

48
whenever

the leader commits to X \ I.

In this equilibrium the leader obtains a payoff of U
(
1
3

)
, which is less than U(xC) even though

the cover K gives some commitment power to the leader. The follower, on the other hand,

obtains a payoff that is greater than U(xC), and, therefore, greater than the payoff of the

leader (albeit, under full commitment, the follower obtains a payoff that is less than U(xC),

and, therefore, also less than the payoff of the leader in that case).

The final part of the paper studies the implications of our analysis for oligopolies. We

first examine how competition and production technology affect in this case the limits of

commitment. The more homogenous the products made, and the greater the returns to

scale, the stronger the strategic motives of the leader, thus reinforcing the importance of

commitment. Yet we show that competition and production technology have non-trivial

effects on the plausible outcomes. For instance, making products more homogeneous might

narrow the set of plausible actions of the leader. Finally, various optimal design problems

are explored. We solve the problem of a designer aiming to maximize either the payoff of

the leader, the payoff of the follower, consumer surplus, producer surplus, or total welfare.

Plausible outcomes which involve the leader taking an action outside the convex hull of her

Stackelberg and Cournot actions play a key role in this context. For instance, we show that

any plausible outcome maximizing total welfare is such that the leader produces a quantity

greater than her Stackelberg quantity.

The rest of the paper is organized as follows. The model and lead example are presented

in Section 2. The general analysis is contained in Sections 3 and 4. Section 5 examines the

implications of our analysis for oligopolies, and Section 6 concludes.

4That is, the leader produces 1
8 whenever in the first period the leader commits to producing a quantity in

the complement of I.

4



Related Literature. We contribute to the literature on commitment, and, more specifically,

to the strand of research exploring settings characterized by temporal asymmetries, in the

vein of von Stackelberg (1934). We suggest a flexible yet tractable model to parameterize

commitment in such settings. The model we propose is related to the model of Renou (2009);

other related models include Saloner (1987), Admati and Perry (1991), and Romano and

Yildirim (2005). In these papers, each player of a base game gradually restricts the set of

actions that he will choose from in a terminal period; the environments considered and the

kind of questions addressed are very different from ours, since players occupy temporally

symmetric positions. Furthermore, all these papers fix the degree of commitment that the

players have. For instance, in Renou (2009) each player has full commitment power, in the

sense of being able to restrict his final action in any way that he desires.5 The idea of

partial commitment which lies at the heart of our study, connects our work to several classic

papers. In Spence (1977) and Dixit (1980), the leader (i.e., the incumbent firm in that case)

can pay a fraction of her production costs in advance. As this fraction goes from one to

zero, the quantity produced by the leader spans exactly the range of values between the

Stackelberg and Cournot quantities, nothing beyond that. Other prominent models of partial

commitment include Maskin and Tirole (1988), Bagwell (1995), van Damme and Hurkens

(1997), Maggi (1999), Henkel (2002), Várdy (2004), Caruana and Einav (2008), and Kamada

and Kandori (2020).6 The approach of the present paper is perhaps closest, in spirit at least,

to Henkel (2002), Caruana and Einav (2008), and Kamada and Kandori (2020), where some

players might have future opportunities to revise their choices, subject to switching costs or

uncertainty.7

More broadly, our paper belongs to a recent literature taking a base game as given and

exploring the set of outcomes resulting from allowing various aspects of the actual game to

change. This literature includes Nishihara (1997), Kamenica and Gentzkow (2011), Berge-

mann, Brooks and Morris (2015), Bergemann and Morris (2016), Salcedo (2017), Taneva

(2019), Makris and Renou (2021), Gallice and Monzón (2019), and Doval and Ely (2020)),

among many others.

5In Renou (2009), it is the ability of all players to simultaneously commit to any subsets of actions which
induces a rich and non-trivial set of equilibrium outcomes.

6In Maskin and Tirole (1988), commitment erodes over time. In Bagwell (1995), van Damme and Hurkens
(1997), Maggi (1999), and Várdy (2004), imperfect monitoring hampers the leader’s ability to commit.

7The focus of these papers is different from ours. Henkel (2002) studies strategic delays. Caruana and Einav
(2008) and Kamada and Kandori (2020) seek to understand how revision opportunities affect cooperation.
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2 Model and Lead Example

The model is described in Subsection 2.1. Subsection 2.2 introduces a number of key definitions

and simplifying notation. The lead example used to illustrate our results throughout the paper

is presented in Subsection 2.3.

2.1 The Model

There are two players, a leader and a follower, with action spaces X = [x, x] and Y = [y, y],

respectively. The elements of X × Y are referred to as outcomes. We let K denote the set of

covers of X , that is, K ∈ K if and only if K is a collection of non-empty subsets of X whose

union is equal to X . The games that we consider comprise two stages. Given an exogenously

fixed K ∈ K:8

Stage 1. the leader publicly selects Xi ∈ K;

Stage 2. leader and follower simultaneously choose actions x and y, with x contained in Xi

and y contained in Y .

An example in which K comprises three elements is depicted in Figure 2.

The payoffs are given by u(x, y) for the leader and v(y, x) for the follower, where u and

v are twice continuously differentiable functions satisfying u11 < 0 and v11 < 0.9 The game

described above is denoted by G(K). We refer to G(2X ) as the full-commitment game and to

G({X}) as the no-commitment game.

The central notion of our paper is:

Definition 1. Let K̃ ⊆ K. An outcome (x∗, y∗) is said to be K̃-plausible if there exists a

cover K ∈ K̃ such that (x∗, y∗) is a subgame perfect equilibrium outcome of G(K). An action

x∗ ∈ X is said to be K̃-plausible if it forms part of a K̃-plausible outcome.

When we deem the chances of confusion sufficiently small, the term plausible will be used

instead of K-plausible.

8The model thus rules out any form of commitment to randomized devices.
9The assumption that u and v are differentiable is easily dispensed with, but simplifies the exposition a lot.
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Figure 2: Game Tree of G(K), where K = {X1,X2,X3}

2.2 Additional Definitions and Notation

Three families of covers will be at the center of our attention: the collection of interval

covers (i.e., covers comprising only intervals) is denoted by KI ; the collection of partitions

of X is denoted by P ; finally, the collection of interval partitions is denoted by PI , that is,

PI = P ∩ KI .

The leader’s action space being compact and u11 negative, to every y ∈ Y corresponds a

unique best response RL(y) of the leader; similarly, as Y is compact and v11 negative, to every

x ∈ X corresponds a unique best response RF (x) of the follower. Let

ϕ(x) := RL

(
RF (x)

)
.

The fixed points of ϕ are actions of the leader in (subgame perfect) Nash equilibria of the

no-commitment game; such actions and Nash equilibria are referred to as Cournot actions

and outcomes, respectively. The set of Cournot actions is denoted by XC , with xC
n denoting

a generic element of this set.

We let U(x) be the payoff of the leader from taking action x when the follower best-responds

to x, that is,

U(x) := u
(
x,RF (x)

)
.

The maximizers of U are actions of the leader in subgame perfect equilibria of the full-

commitment game. Such actions are referred to as Stackelberg actions; the outcomes of

these equilibria are called Stackelberg outcomes.
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The upper contour set of x with respect to U is written Q≥(x), that is,

Q≥(x) :=
{
x̃ : U(x̃) ≥ U(x)

}
.

The sets Q>(x), Q≤(x), and Q<(x) are similarly defined. Whenever we deem the chances

of confusion sufficiently small, we will talk about, e.g., the upper contour set of x, without

explicit reference to U .

Let

η(x̃, x) := u
(
x̃, RF (x)

)
− u
(
x,RF (x)

)
.

In words, η(x̃, x) measures the leader’s gain from deviating from x to x̃ when the follower

best-responds to x.

Definition 2. A pair (K, β) with K ∈ K and β : K → X is said to be admissible if

(a) β(Xi) ∈ Xi, for all Xi ∈ K;

(b) η
(
x, β(Xi)

)
≤ 0, for all Xi ∈ K and all x ∈ Xi.

Note that a given cover may form part of several admissible pairs, or none at all. Furthermore,

each admissible pair (K, β) is associated with at least one subgame perfect equilibrium of

G(K), and vice versa, as recorded by the following remark:

Remark 1. An outcome (x∗, y∗) is K̃-plausible if and only if there exists an admissible pair

(K, β) with K ∈ K̃ and Xi∗ ∈ K, such that

(i) x∗ = β(Xi∗),

(ii) U
(
β(Xi∗)

)
= maxXi∈K U

(
β(Xi)

)
,

(iii) y∗ = RF (x
∗).

We then say that (K, β) implements outcome (x∗, y∗) (or action x∗).

2.3 The Duopoly Example

We formally introduce here our lead example. Leader and follower are two identical firms, each

choosing a quantity in X = Y =
[
0, 2

2−r

]
.10 A firm producing quantity q incurs cost 3q − r

2
q2

10Quantities larger than 2/(2− r) would lead to negative profits no matter what.
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and sells at unit price 4− (1− d)Q− dq, where Q represents the total quantity produced by

the two firms. In the previous expressions, r < 2 measures the returns to scale and d ∈ [0, 1]

the degree of product differentiation. Letting u(x, y) (respectively, v(y, x)) be the profit of

the leader (respectively, the follower) when leader and follower respectively produce x and y

gives v(y, x) = u(y, x) and

u(x, y) = x− (1− d)xy −
(
1− r

2

)
x2. (1)

3 Interval Plausibility

This section examines which outcomes are plausible under interval covers. Subsection 3.1

briefly explains why the set of KI-plausible outcomes generally differs from the set of PI-

plausible ones; Subsection 3.2 provides characterizations of these two sets. A couple of im-

portant special cases are investigated in Subsection 3.3.

3.1 Preliminaries

As far as interval covers are concerned, the criteria for admissibility happen to take a very

simple form, which we describe in the next lemma.

Lemma 1. For K ∈ KI , the pair (K, β) is admissible if and only if, for all Xi ∈ K, one of

the following conditions holds:

(i) β(Xi) ∈ Xi ∩ XC;

(ii) β(Xi) = minXi and ϕ
(
β(Xi)

)
< β(Xi);

(iii) β(Xi) = maxXi and ϕ
(
β(Xi)

)
> β(Xi).

The proof of the lemma is elementary; we relegate it to Appendix A. Figure 3, panel A,

illustrates the result in the context of the duopoly example, for parameter values d = 0 and

r = 6/5. The black curve represents the graph of the function ϕ; this curve crosses the 45-

degree line at the Cournot actions xC
1 = 0, xC

2 = 5/9, and xC
3 = 5/4. An admissible pair (K, β)

must be such that every action β(Xi) which belongs to a region of the figure comprising a left-

pointing arrow (respectively, right-pointing arrow) is either a Cournot action, or the leftmost

(respectively, rightmost) element of Xi.

Lemma 1 enables us to make the following observation:
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x

ϕ

45◦
5
9

5
4

5
2

1
5

1

(a)

x

U

5
9

5
4

5
2

5
17

(b)

Figure 3: Duopoly Example, for d = 0 and r = 6/5

Remark 2. If (K, β) is an admissible pair and K ∈ PI , then β(K) ∩ XC ̸= ∅.11

The proof of this remark for the case in which the number of Cournot actions is finite is as

follows.12 Let X0 denote the partition element containing x. Applying Lemma 1 shows that

ϕ
(
β(X0)

)
≥ β(X0). If the previous inequality is an equality, then β(X0) ∈ XC ; otherwise,

let xC
1 denote the smallest Cournot action greater than β(X0), and X1 the partition element

containing xC
1 . As ϕ is continuous, we have ϕ(x) > x for all x ∈

(
β(X0), x

C
1

)
.13 So using

Lemma 1 gives ϕ
(
β(X1)

)
≥ β(X1). The number of Cournot actions being finite, and using

the fact that ϕ(x) ≤ x, we see by induction that β(Xi) ∈ XC for some Xi ∈ K.

Interval covers are more permissive than interval partitions precisely because under interval

covers all Cournot actions may be “bypassed” by β. To illustrate this point, return to the

example of Figure 3. Now pick arbitrary actions x′ and x′′ such that 0 < x′ < 5
9
< x′′ < 5

4

and consider the pair (K, β) where K =
{
[0, x′′], [x′, 5

2
]
}
, β
(
[0, x′′]

)
= x′′, and β

(
[x′, 5

2
]
)
= x′.

Applying Lemma 1 shows that (K, β) is admissible; yet, here β(K) ∩ XC = ∅. The ability

to bypass Cournot actions often enlarges the set of KI-plausible outcomes relative to the set

of PI-plausible ones. For instance, as we shall see, in the context of the previous example no

action in
(
5
9
, 5
4

)
is PI-plausible, though all of them are KI-plausible.

11Where β(K) denotes the image of K under the mapping β.
12The proof is similar for the remaining case.
13By Berge’s maximum theorem, both RF and RL are continuous, thus ϕ is continuous as well.
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3.2 Main Results

We next proceed to characterize first the PI-plausible outcomes (Theorem 1), then the KI-

plausible ones (Theorem 2).

Theorem 1. An action x∗ is PI-plausible if and only if there exists a Cournot action xC
n∗ in

the lower contour set of x∗ with respect to U such that

(
ϕ(x∗)− x∗)(xC

n∗ − x∗) ≥ 0. (2)

The proof of the if part of the theorem is easy. Consider x∗ such that (2) holds for some

xC
n∗ ∈ Q≤(x

∗). All Cournot actions being trivially PI-plausible, suppose ϕ(x∗) > x∗ (the re-

maining case is analogous). In this case, by (2), xC
n∗ > x∗. Now consider K =

{
[x, x∗], (x∗, x]

}
,

and β : K → X given by β
(
[x, x∗]

)
= x∗ and β

(
(x∗, x]

)
= xC

n∗ . By Lemma 1, the pair (K, β) is

admissible. So (K, β) implements x∗, since xC
n∗ ∈ Q≤(x

∗). The proof of the only if part of the

theorem is in Appendix A, and rests on the fact that if a pair (K, β) with K ∈ PI implements

an action x∗ such that, say, ϕ(x∗) > x∗, then β(Xi) ∈ XC ∩ (x∗, x] for some Xi ∈ K.

Applying Theorem 1 to the example of Figure 3 shows that the set of PI-plausible actions

is {0} ∪
[

5
17
, 5
9

]
∪
[
5
4
, 5
2

]
. Firstly, Theorem 1 shows that no action in the interval

(
0, 5

17

)
is PI-

plausible, since all of them belong to the strict lower contour set of each Cournot action (see

panel B). Secondly, any action x ∈
(
5
9
, 5
4

)
satisfies ϕ(x) > x (see panel A). The only Cournot

action greater than any of these actions is xC
3 = 5/4. As U(xC

3 ) > U(x) for all x ∈
(
5
9
, 5
4

)
, we

conclude using Theorem 1 that no action in this interval is PI-plausible. Mirror arguments

show that all actions in {0} ∪
[

5
17
, 5
9

]
∪
[
5
4
, 5
2

]
are PI-plausible.14

The following corollary of Theorem 1 can oftentimes readily establish whether an action

is PI-plausible or not.

Corollary 1. Every action which belongs to the intersection of the upper contour sets of the

Cournot actions with respect to U is PI-plausible. An action that does not belong to any of

these upper contour sets is not PI-plausible.

We next turn our attention to the collection of KI-plausible outcomes.

14An action x∗ ∈ [ 5
17 ,

5
9 ]∪ [ 54 ,

5
2 ] is for instance implemented by the pair (K,β) where K =

{
[0, x∗), [x∗, 5

2 ]
}
,

β
(
[0, x∗)

)
= 0, and β

(
[x∗, 5

2 ]
)
= x∗.
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Theorem 2. An action x∗ is KI-plausible if and only if both Q≤(x
∗) ∩

{
x : ϕ(x) ≤ x

}
and

Q≤(x
∗) ∩

{
x : ϕ(x) ≥ x

}
are non-empty and

minQ≤(x
∗) ∩

{
x : ϕ(x) ≤ x

}
≤ maxQ≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
. (3)

The proof of the if part of the theorem is straightforward. Suppose that both Q≤(x
∗)∩
{
x :

ϕ(x) ≤ x
}
and Q≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
are non-empty, and that (3) holds. Let x′ and x′′ be

such that:

(i) x′ ∈ Q≤(x
∗) ∩

{
x : ϕ(x) ≤ x

}
,

(ii) x′′ ∈ Q≤(x
∗) ∩

{
x : ϕ(x) ≥ x

}
,

(iii) x′ ≤ x′′.

Consider K =
{
{x∗}, [x, x′′], [x′, x]

}
, and β : K → X given by β

(
{x∗}

)
= x∗, β

(
[x, x′′]

)
= x′′,

and β
(
[x′, x]

)
= x′. Applying Lemma 1 shows that (K, β) is admissible; so (K, β) implements

x∗, since x′ and x′′ both belong to the lower contour set of x∗. The proof of the only if part

of the theorem is in Appendix A, and rests on the observation that, given any admissible

pair (K, β) with K ∈ KI , the image of β must contain actions x′ and x′′ which satisfy the

properties (i)–(iii) previously listed.15

The following corollary of Theorem 2 is immediate.

Corollary 2. Any action that belongs to the union of the upper contour sets of the Cournot

actions with respect to U is KI-plausible.

Applying Theorem 2 to the example in Figure 3 shows that the set of KI-plausible actions

is {0} ∪
[

5
17
, 5
2

]
.16 By Corollary 2, all actions in {0} ∪

[
5
17
, 5
2

]
are KI-plausible. Moreover, any

x∗ ∈
(
0, 5

17

)
is such that Q≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
= ∅. We conclude using Theorem 2 that

no action in
(
0, 5

17

)
is KI-plausible.

Observe that in the previous example the unique Stackelberg action corresponds to xC
3 =

5/4, whence the convex hull of the Stackelberg and Cournot actions equals
[
0, 5

4

]
. It follows

that the set of KI-plausible actions is neither contained in nor contains the convex hull of the

Stackelberg and Cournot actions.17

15Notice that if we assumed instead that K ∈ PI , we would in addition require that x′ = x′′ (Remark 2).
16Actions in

(
5
9 ,

5
4

)
are KI -plausible, but are not PI -plausible. An action x∗ in this interval is for instance

implemented by the pair (K,β) where K =
{
[0, 5

2 ], [0, x
∗]
}
, β
(
[0, 5

2 ]
)
= 0, and β

(
[0, x∗]

)
= x∗.

17Furthermore, since here the leader can ensure a payoff of 0 by choosing x = 0, we see that no action in

12



3.3 Further Analysis

Corollary 2 raises the following question: does the set of KI-plausible actions generally coincide

with the union of the upper contour sets of the Cournot actions? The following example shows

that it needs not.

x

ϕ

45◦

1
2

3
8

5
8

1

(a)

x

U

1
2 1

(b)

Figure 4: Example

Example. Let X = Y = [0, 1],

u(x, y) = xy + (1− x)(1− y)− (x− 1
2
)2

2
− 3(y − 1

2
)2

2
,

and v(y, x) = u(y, x). Pick an arbitrary action x∗ ≥ 1/2, and consider the pair (K, β) in which

K =
{
[0, x∗], [1−x∗, 1]

}
and β

(
[0, x∗]

)
= x∗ = 1−β

(
[1−x∗, 1]

)
. Figure 4, panel A, shows that

ϕ(x∗) ≥ x∗ and ϕ(1−x∗) ≤ 1−x∗; on the other hand, panel B shows that U(x∗) = U(1−x∗).

We conclude using Lemma 1 that (K, β) constitutes an admissible pair, which implements x∗

as well as 1 − x∗. It follows that all actions in [0, 1] are KI-plausible. Yet the union of the

upper contour sets of the Cournot actions contains no other action than the Cournot actions

themselves.

The previous example gives an early illustration of the fact that the welfare of the leader

need not be monotonic in the degree of commitment afforded to the latter. Here, the payoff

which the leader obtains equals 1/2 both in the full- and no-commitment games, yet inter-

(0, 5
17 ) is K-plausible. The remark in the text therefore applies to the K-plausible actions too: neither are they

contained in the convex hull of the Stackelberg and Cournot actions, nor do they contain it.
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mediate degrees of commitment can leave the leader with a payoff as low as 11/32. We will

return to this important insight in the next section.

As a counterpoint to the example above, the following proposition shows that in somewhat

well-behaved environments, the set of KI-plausible actions in fact coincides with the union of

the upper contour sets of the Cournot actions.

Proposition 1. Suppose U is either quasi-convex or quasi-concave. An action is KI-plausible

if and only if it belongs to the union of the upper contour sets of the Cournot actions with

respect to U .

Proof: We already know by Corollary 2 that an action that belongs to the upper contour set

of some Cournot action is KI-plausible. Below we show that the converse is true too if U is

either quasi-convex or quasi-concave.

Suppose that U is quasi-convex, and consider an action x∗ in the strict lower contour set

of every Cournot action. Then Q≤(x
∗) is a convex set, and ϕ(x) ̸= x for all x ∈ Q≤(x

∗). The

intermediate value theorem shows that either x < ϕ(x) for all x ∈ Q≤(x
∗), or x > ϕ(x) for all

x ∈ Q≤(x
∗). Either way, Theorem 2 shows that x∗ cannot be KI-plausible.

Next, suppose that U is quasi-concave, and consider an action x∗ in the strict lower contour

set of every Cournot action. Then Q>(x
∗) is a convex set, and ϕ(x) ̸= x for all x ∈ Q≤(x

∗).

This implies that, given x ∈ Q≤(x
∗), either (i) ϕ(x) > x and x < xC

n for all xC
n ∈ XC , or

(ii) ϕ(x) < x and x > xC
n for all xC

n ∈ XC . We conclude using Theorem 2 that x∗ is not

KI-plausible. ■

Finally, combining Theorems 1 and 2 yields:18

Proposition 2. If there exists a unique Cournot outcome, then the set of KI-plausible actions

is also the set of PI-plausible ones, and this set coincides with the upper contour set of the

unique Cournot action with respect to U .

Proof: Suppose that there exists a unique Cournot action; denote it by xC . Applying Corol-

lary 1 shows that every x∗ ∈ Q≥(x
C) is PI-plausible. Next, observe that

{
x : ϕ(x) ≥ x

}
=

[x, xC ] and
{
x : ϕ(x) ≤ x

}
= [xC , x]. Applying Theorem 2 thus shows that if x∗ is KI-

plausible, xC must belong to the lower contour set of x∗. ■
18A self-contained proof of Proposition 2 is provided in Appendix B. We rely here on this section’s theorems.
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4 Beyond Interval Plausibility

In this section, we extend our investigation beyond interval covers of the leader’s action space.

Subsection 4.1 characterizes the set of K-plausible outcomes for a class of settings comprising

a unique Cournot outcome. In Subsection 4.2, we show that when the reaction curves are

sufficiently steep the K-plausible outcomes form a strict superset of the KI-plausible ones, and

characterize the minimal subset of covers generating all plausible outcomes.

4.1 Main Result

To keep the analysis tractable, we focus in this section on settings satisfying the following

three regularity conditions:

(RC1) XC =
{
xC
}
, with xC ∈ int(X ) and yC := RF (x

C) ∈ int(Y);

(RC2) u2v2 > 0;

(RC3) u12v12 > 0.

Condition (RC1) supposes the existence of a unique Cournot outcome, (xC , yC). Condition

(RC2) ensures homogenous payoff externalities: these could be positive or negative, but cannot

change sign. Similarly, condition (RC3) ensures homogenous strategic interactions: actions

may be strategic complements or substitutes, but cannot be both.

For every x ∈ X , the function η(·, x) is strictly concave and satisfies η(x, x) = 0. It follows

that η(x̃, x) = 0 for at most one action x̃ different from x. We can thus define γ : X → X as

follows:

� if η(x̃, x) = 0 for some x̃ ̸= x, set γ(x) = x̃;

� otherwise, set

γ(x) =





x if x < xC ,

xC if x = xC ,

x if x > xC .

The interpretation is straightforward: in cases where such an action exists, γ(x) is the action

making the leader indifferent between choosing x or γ(x) when the follower best-responds to

x.
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Lastly, let

S :=





{
x : x ≤ γ(x) ≤ xC

}
if u2u12 > 0,

{
x : xC ≤ γ(x) ≤ x

}
if u2u12 < 0.

As γ is continuous, S is compact.19 Moreover, S evidently contains xC . We are now ready to

state this section’s main result.

Theorem 3. Suppose (RC1)–(RC3) hold. The set of K-plausible actions is also the set of

P-plausible actions; this set coincides with the upper level set of U := minx∈S U
(
γ(x)

)
with

respect to U .20

The proof of Theorem 3 is in Appendix B. Return to the duopoly example, with parameter

values d = 0 and r = 4/5. In Figure 5, panel A, the black curve represents the graph of the

function ϕ, which crosses the 45-degree line at xC = 5/11. Notice that in this example

u2u12 > 0, so S =
{
x : x ≤ γ(x) ≤ xC

}
. The gray curve represents the graph of γ: we

see that S = [0, xC ] and γ(S) =
[

5
18
, xC

]
. Panel B depicts the graph of the function U .

Minimizing U over γ(S) shows that U = U
(

5
18

)
. The upper level set of U corresponds to[

5
18
, x̂2

]
. The combination of Theorem 3 and Proposition 2 shows that the set of K-plausible

outcomes is strictly larger than the set of KI-plausible ones, since here the upper contour set

of xC is
[
xC , x̂1

]
.

x

ϕ, γ

45◦

5
11

5
31

5
18

5
36

(a)

x

U

U(xC)

U

5
18 x̂1x̂2

5
11

x̂1 =
5(

√
85+11)
66

x̂2 =
5(

√
274+18)
108

(b)

Figure 5: Duopoly Example, for d = 0 and r = 4/5

To partly illustrate the workings of Theorem 3, consider in the previous example x∗ =

1/3. As x∗ /∈ Q≥(x
C) =

[
xC , x̂1

]
(see panel B), the action x∗ is not KI-plausible. Now let

19The continuity of γ is inherited from the continuity of u and RF .
20The upper level set of U with respect to U is defined as {x : U(x) ≥ U}.
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X1 := {0}∪
(
1
3
, 5
3

]
, X2 :=

(
0, 1

3

]
, and consider the pair (K, β) where K = {X1,X2}, β(X1) = 0,

and β(X2) =
1
3
. The function η

(
·, 1

3

)
is strictly concave, maximized at ϕ

(
1
3

)
> 1

3
, and equal

to 0 at 1
3
. Therefore, η

(
x, 1

3

)
< 0 for all x < 1

3
. Next, as ϕ(0) > 0 the definition of γ yields

η(x, 0) < 0 for every x > γ(0). Since γ(0) < 1
3
(see panel A), we thus obtain η(x, 0) < 0 for all

x ∈
(
1
3
, 5
3

]
. Combining the previous observations shows that (K, β) constitutes an admissible

pair. Moreover, as U(x∗) > U(0), we see that (K, β) implements x∗.

The previous paragraph illustrates once more that the leader could be better off with less

commitment rather than more. Moreover, as here v2 < 0, the fact that x∗ < xC implies that

the corresponding equilibrium payoff of the follower is larger than U(xC). In sum, although

G(2X ) is a game with a first-mover advantage (Gal-Or (1985)), G(K) here results in a second-

mover advantage.

4.2 Further Analysis

This subsection addresses two questions: (i) What are the general conditions under which the

set of K-plausible outcomes is strictly larger than the set of KI-plausible ones? (ii) What is

the minimal subset of covers generating all plausible outcomes?

We show in Appendix B that the answer to question (i) is determined by the shape of γ:

whenever u2u12 > 0 (respectively, u2u12 < 0) the K-plausible outcomes form a strict superset

of the KI-plausible ones if and only if γ(x) < xC for some x < xC (respectively, γ(x) > xC

for some x > xC). A simple sufficient condition for the latter condition to hold is plainly that

γ′(xC) > 0. Calculations relegated to Appendix B establish that γ′(xC) > 0 if and only if

R′
L(y

C)R′
F (x

C) > 1/2. We thus obtain:

Proposition 3. Suppose (RC1)–(RC3) hold. If R′
L(y

C)R′
F (x

C) > 1/2 the K-plausible out-

comes then form a strict superset of the KI-plausible outcomes.

Below, let PI+ denote the collection of partitions of X such that at most one element of

the partition considered is not an interval. The answer to question (ii) is provided by the next

result, whose proof is in Appendix B.

Proposition 4. Suppose (RC1)–(RC3) hold. The set of K-plausible outcomes is also the set

of PI+-plausible outcomes.

In fact, it can be shown that if U is either quasi-concave or quasi-convex then all plausible

outcomes can be implemented with a partition of the leader’s action space such that each
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partition element is either an interval or a union of two intervals. In such environments, very

simple commitments generate the entire set of plausible outcomes: effectively, the leader is

plainly asked to commit to choosing an action: (a) inside or outside an interval, (b) below or

above a cutoff. This remark is particularly useful when taking the perspective of a designer

controlling the leader’s commitment. Several design problems of this kind are examined in

the next section.

5 Application: Duopoly

Up to this point, we used the duopoly example to illustrate the workings of the model and the

results of our analysis. In this section, we instead use our results to shed light on the limits of

commitment in duopolies: throughout this section, u(x, y) is given by (1) and v(y, x) = u(y, x).

5.1 The Limits of Commitment in Duopolies

How do competition and production technology respectively affect the limits of commitment

in duopolies? The formal analysis forming the basis of the discussion which follows is relegated

to Appendix C. The main points of this analysis are summarized in Figures 6 and 7.

x

d

γ(0) < xC γ(0) > xC

|XC | = 3 |XC | = 1

d∗r − 1

Figure 6: Comparative Statics with respect to d for r = 6/5

In Figure 6, the horizontal axis measures the degree of product differentiation: d = 0 cor-

responds to the homogenous products case, and d = 1 to the perfectly differentiated products

case. In Figure 7, the horizontal axis measures returns to scale: decreasing for r < 0 and

increasing for r > 0. In both figures, the vertical axis represents the leader’s action space,[
0, 2

2−r

]
. The different colors identify the different subsets of plausible actions:
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� an action is PI-plausible if and only if it is colored in green;

� an action is KI-plausible if and only if it is colored in green or blue;

� an action is P-plausible if and only if it is colored in green, blue, or red;

� in this example the K-plausible actions coincide with the P-plausible ones.

x

r

γ(0) > xC γ(0) < xC

|XC | = 1 |XC | = 3

r∗ d+ 1

Figure 7: Comparative Statics with respect to r for d = 0

Notice that, in both figures, a regime switch occurs where d = r−1; at this cutoff, the number

of Cournot actions changes:

- for d < r− 1, the set of Cournot actions is given by XC =
{
xC
1 , x

C
2 , x

C
3

}
, where xC

1 = 0,

xC
2 = 1

3−r−d
and xC

3 = 1
2−r

;

- for d > r − 1, the unique Cournot action is xC = 1
3−r−d

.

We discuss below the mechanisms at play in these two regions of parameters.

For d < r − 1: As xC
1 = 0, using Corollary 2 establishes that all actions in the upper contour

set of 0 are KI-plausible. Furthermore, producing 0 yields a payoff of 0 regardless of the

quantity produced by the other firm. Combining the previous remarks shows that the sets of

KI- and K-plausible actions both coincide with the upper contour set of 0.21 Next, note that:

(a) reducing the degree of competition increases U ,

21In fact, the set of P-plausible actions also coincides in this case with the upper contour set of 0. To
see this, pick an arbitrary action x∗ ∈ Q≥(0), and consider the pair (K,β) where K :=

{
{x∗},X \ {x∗}

}
,

β
(
{x∗}

)
= x∗, and β

(
X \ {x∗}

)
= 0.
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(b) increasing the returns to scale causes the graph of U to tilt anti-clockwise.

Consequently, the softer the competition, the larger the set of quantities giving the leader

a non-negative payoff. On the other hand, the more increasing the returns to scale, the

greater (respectively, smaller) the payoff of the leader from producing large (respectively,

small) quantities. In Figure 6, the set of K-plausible actions thus expands as d increases from

0 to r−1. By contrast, in Figure 7, the set of K-plausible actions shifts upwards as r increases

past d+ 1.

For d > r − 1: We show in Appendix C that the threshold U = minx∈S U
(
γ(x)

)
is equal to

U
(
γ(0)

)
as long as γ(0) is less than the unique Cournot action and equal to U(xC) otherwise.

Using Theorem 3 shows that the K-plausible actions then coincide with the upper contour set

of min
{
γ(0), xC

}
. As softening competition increases U

(
γ(0)

)
as well as U

(
xC
)
, the set of

K-plausible actions thus shrinks as d goes from r − 1 to 1 (see Figure 6). By contrast, as r

increases, the interval of K-plausible actions:

(i) shrinks (respectively, expands) at its lower (respectively, upper) end in the region of

Figure 7 where min
{
γ(0), xC

}
= xC ,22

(ii) expands at both of its ends in the region of Figure 7 where min
{
γ(0), xC

}
= γ(0).23

Part (i) is explained as follows. In that region, the lower end of the interval of K-plausible

actions coincides with xC , which increases as production technology improves. The upper end

of the interval, on the other hand, coincides with the largest quantity of the leader giving her

the same payoff as the unique Cournot action. Part (ii) follows from the fact that improving

production technology reduces U
(
γ(0)

)
by causing γ(0) to fall.

5.2 Optimal Commitment in Duopolies

What is the optimal form of commitment from the perspective of a designer interested in

maximizing, say, consumer surplus? To answer this question and other related questions, we

analyze in this subsection problems of the form

maxW (x, y) s.t. (x, y) is K-plausible. (P)

22I.e., for r < r∗(d) = 2−
√
2(1− d)).

23I.e., for r∗(d) < r < d+ 1.
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Below, let xK (respectively, xK) denote the smallest (respectively, largest) K-plausible

action. We first examine situations in which the designer is one of the two firms. Trivially,

the Stackelberg outcome is the best possible K-plausible outcome from the perspective of the

leader. On the other hand, since v2 is here negative, the optimal K-plausible outcome from

the perspective of the follower involves the leader producing as little as plausibly possible.

The proposition which follows summarizes these observations.

Proposition 5.

(i) For W = u, the unique solution of (P) is
(
xS, RF (x

S)
)
.

(ii) For W = v, the unique solution of (P) is
(
xK, RF (x

K)
)
.

By Proposition 5, full commitment is optimal for the leader. On the other hand, from the

perspective of the follower, no commitment is optimal if and only if r /∈
(
r∗(d), d + 1

)
. For

r ∈
(
r∗(d), d + 1

)
, the smallest K-plausible action is not a Cournot action. In this case, the

simplest follower-optimal cover takes the form of

K =
{(

0, γ(0)
]
, {0} ∪

(
γ(0), x

]}
,

that is, the leader either commits to producing a quantity in the interval
(
0, γ(0)

]
, or commits

to producing a quantity outside of this interval.

We next examine situations in which the designer aims to maximize either consumer sur-

plus, producer surplus, or total welfare (i.e., the sum of producer and consumer surplus). We

follow Singh and Vives (1984) and define the consumer surplus generated by an outcome (x, y)

by24

CS(x, y) =
(x+ y)2

2
− dxy.

Producer surplus is simply defined by

PS(x, y) = u(x, y) + v(y, x).

Proposition 6.

(i) For W equal to consumer surplus, the unique solution of (P) is
(
xK, RF (x

K)
)
.

24The expression for consumer surplus is based on the representative consumer utility function, given by
4(x+ y)− 1

2 (x+ y)2 + dxy.
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(ii) For W equal to producer surplus, the unique solution of (P) is
(
xC , RF (x

C)
)
if r < r†(d),

and
(
xS, RF (x

S)
)
if r†(d) < r < d+ 1;25 if r > d+ 1 then the solutions are

(
xC
3 , 0
)
and(

0, xC
3

)
.

(iii) For W equal to total welfare, the unique solution of (P) is
(
xK, RF (x

K)
)
.

Part (i) of Proposition 6 is explained as follows. Firstly, we show that consumer surplus

is a convex function of the quantity which the leader produces. The problem of the designer

therefore reduces to choosing between
(
xK, RF (x

K)
)
and

(
xK, RF (x

K)
)
. Inducing the leader

to produce xK instead of xK is optimal because in this way the designer can exploit the

strategic motive to produce large quantities which arises from commitment. With multiple

Cournot actions, or if there exists a single Cournot action and γ(0) ≥ xC , the binary partition{
[x, xK), [xK, x]

}
is consumer-optimal. Otherwise, the simplest consumer-optimal cover takes

the form of

K =
{(

0, γ(0)
]
, {0} ∪

(
γ(0), xK),

[
xK, x

]}
,

that is, the leader either commits to producing a quantity in the interval
(
0, γ(0)

]
, or commits

to producing a quantity outside of this interval; in the latter case, the leader either commits

to producing a quantity at least as large as xK, or commits to producing less than this.

Part (ii) of Proposition 6 is straightforward. With decreasing returns to scale, producer

surplus is maximized by inducing both firms to produce the same quantity; in this case, no-

commitment is producer-optimal. In contrast, with large returns to scale, producer surplus

is maximized by letting one firm acquire a bigger market share than the other firm. In

particular, for very large returns to scale, producer surplus is maximized by letting one firm

act as a monopolist. Consequently, no-commitment is producer-optimal for extreme returns

to scale, whereas full-commitment is producer-optimal for sufficiently large returns to scale.

Part (iii) of Proposition 6 follows from the fact that producer surplus tends to be less

sensitive than consumer surplus to the quantity which the leader produces. So maximizing

total welfare implies maximizing consumer surplus.

25Where r†(d) := 2−
(

3
√

3(9−
√
78)

3 + 1
3
√

3(9−
√
78)

)
(1− d).
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6 Conclusion

This paper proposes a model to parameterize commitment in leader-follower games. Said

model enables us to relax the full-commitment assumption implicit in the formulation of

the Stackelberg model. We thereby account for the observation that, in many economic

applications of the Stackelberg model, partial adjustments to the leader’s initial action are in

fact feasible.

In settings where the action spaces can be represented by compact intervals of the real

line, our model turns out to be remarkably tractable, allowing us to characterize the rich set

of equilibrium outcomes that arise for different degrees of commitment that the leader might

be endowed with. In doing so, our study uncovers novel insights. For instance, we identify

conditions under which giving more commitment power to the leader could end up hurting

her. We also show that settings traditionally associated with a first-mover advantage can

result in a second-mover advantage due to the inability of the leader to commit exactly to

the action of her choice. More than commitment, what matters, our paper highlights, is the

precise form of commitment afforded to the leader.
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A Appendix of Section 3

Proof of Lemma 1: We prove the only if part of the lemma; the proof of the other part

is similar. Suppose that (K, β) constitutes an admissible pair. Reason by contradiction, and

suppose that we can find Xi ∈ K such that ϕ
(
β(Xi)

)
< β(Xi) while β(Xi) ̸= minXi. The

function η
(
·, β(Xi)

)
is strictly concave, maximized at ϕ

(
β(Xi)

)
, and satisfies η

(
β(Xi), β(Xi)

)
=

0. So η
(
x, β(Xi)

)
> 0 for all x ∈

[
ϕ
(
β(Xi)

)
, β(Xi)

)
. Since Xi is an interval, β(Xi) ∈ Xi,

and β(Xi) ̸= minXi, we can find ε > 0 such that
(
β(Xi) − ε, β(Xi)

)
⊂ Xi. Coupling the

previous remarks shows the existence of x ∈ Xi such that η
(
x, β(Xi)

)
> 0; this contradicts

the assumption that (K, β) is admissible. Hence, ϕ
(
β(Xi)

)
< β(Xi) implies β(Xi) = minXi.

Analogous arguments show that ϕ
(
β(Xi)

)
> β(Xi) implies β(Xi) = maxXi. ■

Proof of Theorem 1: The if part of the theorem was proven in the text; we prove here the

converse. Pick an arbitrary PI-plausible action x∗. We aim to prove the existence of a Cournot

action xC
n∗ ∈ Q≤(x

∗) such that (2) holds. If ϕ(x∗) = x∗, just take xC
n∗ = x∗; we treat below

the case in which ϕ(x∗) > x∗ (the remaining case is analogous). Reason by contradiction, and

suppose that

XC ∩ (x∗, x] ∩Q≤(x
∗) = ∅. (4)

Let (K, β) implement x∗, where K ∈ PI . We will show that K cannot be a finite cover. By

Berge’s maximum theorem, both RF and RL are continuous, thus ϕ is continuous as well. As

ϕ(x∗) > x∗ and ϕ(x) ≤ x, the intermediate value theorem shows that

XC ∩ (x∗, x] ̸= ∅.
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Note that the continuity of the function ϕ implies the compactness of XC . So XC ∩ (x∗, x] =

XC ∩ [x∗, x] possesses a smallest element, that we denote by xC
1 . Let X1 be the member of K

containing xC
1 . Then Lemma 1 combined with (4) gives

β(X1) ∈ (xC
1 , x] ∩

{
x : ϕ(x) > x

}
.

Now let xC
2 be the smallest Cournot action greater than β(X1), and denote by X2 the member

of K containing xC
2 . The same logic as above gives β(X2) ∈ (xC

2 , x] ∩
{
x : ϕ(x) > x

}
, and

so on. If K were finite, the previous iteration would have to end after finitely many steps,

say m. But then β(Xm) = x and β(Xm) ∈
{
x : ϕ(x) > x

}
, giving ϕ(x) > x. The previous

contradiction proves that K cannot be finite.

We proceed to show that K cannot be infinite either. The function U is continuous and,

by (4), U(xC
n ) > U(x∗) for all xC

n ∈ XC ∩ (x∗, x]. Furthermore, as already pointed out above,

XC ∩ (x∗, x] is a compact set. Therefore,

∆ := min
xC
n∈ XC∩(x∗,x]

U(xC
n )− U(x∗) > 0. (5)

Next, U being continuous and X compact, the function U is uniformly continuous on X .

We can thus find η > 0 such that |U(x′)− U(x)| < ∆ whenever |x′ − x| < η. By (5), we thus

have

U(x) > U(x∗), for all x such that |x− xC
n | < η, xC

n ∈ XC ∩ (x∗, x]. (6)

Now, since (K, β) implements x∗, we must have U
(
β(Xi)

)
≤ U(x∗) for all Xi ∈ K. So

(6) shows that each member of the sequence X1,X2, . . . defined in the first part of the proof

must have a length η or more. This in turn implies that said sequence can have no more than
x−x∗
η

terms. Yet we showed previously that this sequence cannot be finite. This contradiction

completes the proof of the theorem. ■

Proof of Theorem 2: The if part of the theorem was proven in the text; we prove here the

converse. Pick an arbitrary action x∗ of the leader. Suppose thatQ≤(x
∗)∩
{
x : ϕ(x) ≤ x

}
= ∅.

Applying Lemma 1 shows that any admissible pair (K, β) with K ∈ KI must be such that

β(Xi) ∈
{
x : ϕ(x) ≤ x

}
for every Xi ∈ K containing x. This, in turn, implies that every

KI-plausible action belongs to Q>(x
∗), whence x∗ cannot be KI-plausible. A similar argument

shows that Q≤(x
∗) ∩

{
x : ϕ(x) ≥ x

}
= ∅ implies that x∗ is not KI-plausible. Next, suppose

that Q≤(x
∗) ∩

{
x : ϕ(x) ≤ x

}
and Q≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
are non-empty. Both ϕ and U
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being continuous, the min and max of (3) are in this case well defined (since X is a compact

set). Suppose that maxQ≤(x
∗) ∩

{
x : ϕ(x) ≥ x

}
< minQ≤(x

∗) ∩
{
x : ϕ(x) ≤ x

}
, and pick

x† ∈
(
maxQ≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
,minQ≤(x

∗) ∩
{
x : ϕ(x) ≤ x

})
. (7)

Applying Lemma 1 shows that any admissible pair (K, β) with K ∈ KI must be such that,

for every Xi ∈ K containing x†, either (i) β(Xi) ∈
{
x ≥ x† : ϕ(x) ≥ x

}
or (ii) β(Xi) ∈

{
x ≤

x† : ϕ(x) ≤ x
}
. So (7) gives β(Xi) ∈ Q>(x

∗). It ensues that x∗ cannot be KI-plausible. ■

Lemma A.1. Suppose (RC1) holds. Let K ∈ KI and β : K → X ; then (K, β) constitutes an

admissible pair if and only if, for all Xi ∈ K:

argmax
x∈Xi

|x− xC | =
{
β(Xi)

}
. (8)

Proof of Lemma A.1: Let K ∈ KI and β : K → X . We show below that if (K, β) is

admissible then (8) has to hold for all Xi ∈ K; the proof of the converse is analogous.

As ϕ is continuous, notice that




ϕ(x) > x for x < xC ,

ϕ(x) < x for x > xC .
(9)

The function u
(
·, RF (x)

)
being strictly concave and maximized at ϕ(x), it ensues that:

(a) x < xC implies η(x+ ϵ, x) > 0 for all sufficiently small ε > 0;

(b) x > xC implies η(x− ε, x) > 0 for all sufficiently small ε > 0.

If β(Xi) = xC then (8) clearly holds. So suppose β(Xi) < xC (the other case is analogous).

Then remark (a) above gives η
(
β(Xi)+ ϵ, β(Xi)

)
> 0 for all sufficiently small ε > 0. As (K, β)

is admissible, an ε > 0 must exist such that
(
β(Xi), β(Xi) + ε

]
⊂ X \ Xi. Since Xi is an

interval, we obtain x ≤ β(Xi) for all x ∈ Xi. Expression (8) thus holds, since β(Xi) < xC . ■

Alternative Proof of Proposition 2: Let the unique Cournot action be denoted by xC .

Pick an arbitrary KI-plausible action x∗, and let (K, β) implement x∗. By Lemma A.1,

β(Xi) = xC for all Xi ∈ K that include xC . It follows that U(x∗) ≥ U(xC). This shows that

the set of KI-plausible actions is contained in Q≥(x
C).
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Next, pick x∗ ∈ Q≥(x
C) \ {xC} (note that xC is trivially KI-plausible). Suppose x∗ > xC

(the other case is analogous). Consider K = {X1,X2}, with X1 = (x, x∗) and X2 = [x∗, x).

Let β : K → X be given by β(X1) = xC , and β(X2) = x∗. As x∗ > xC , Lemma A.1 shows

that (K, β) constitutes an admissible pair. That (K, β) implements x∗ follows from Remark

1. This shows that x∗ is PI-plausible (since K ∈ PI). So Q≥(x
C) is contained in the set of

PI-plausible actions. The latter observation concludes the proof of the theorem, since any

PI-plausible action is KI-plausible. ■

B Appendix of Section 4

Lemma B.1. Suppose (RC1)–(RC3) hold. If u2u12 > 0, then U is increasing over [x, xC ]. If

u2u12 < 0, then U is decreasing over [xC , x].

Proof: We show the proof for the case in which u2 > 0 and u12 > 0; the other cases are similar.

Pick an arbitrary x < xC , and ε > 0 sufficiently small that u
(
x + ε, RF (x)

)
> u

(
x,RF (x)

)

(such an ε exists, by remark (a) in the proof of Lemma A.1). Then, RF being non-decreasing

(since v12 > 0) and u2 > 0:

U(x+ ε) = u
(
x+ ε, RF (x+ ε)

)
≥ u

(
x+ ε, RF (x)

)
> u

(
x,RF (x)

)
= U(x).

■

Lemma B.2. Suppose (RC1)–(RC3) hold. Then

S =
{
x : η(xC , x) ≤ 0

}
∩
{
x : u

(
xC , RF (x)

)
≤ U(xC)

}
. (10)

Proof: We show the proof of the lemma for the case u2 > 0 and u12 > 0 (the other cases are

similar). Recall that in this case S :=
{
x : x ≤ γ(x) ≤ xC

}
.

The function RF being in this case non-decreasing (and, indeed, increasing in a neighbor-

hood of xC since yC ∈ int(Y)) and u2 > 0, notice that

u
(
xC , RF (x)

)
> u

(
xC , RF (x

C)
)
= U(xC), for all x > xC .

So u
(
xC , RF (x)

)
≤ U(xC) implies x ≤ xC . Now consider x ≤ xC such that η(xC , x) ≤ 0. We

will show that x ∈ S. If x = xC the previous claim is immediate, so pick x < xC . The function

η(·, x) is strictly concave and, by (9), maximized at ϕ(x) > x. As η(x, x) = 0 ≥ η(xC , x), we
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see by definition of γ(x) that x < γ(x) ≤ xC . The right-hand side of (10) is thus contained in

the set S. The proof of the reverse inclusion is analogous. ■

Lemma B.3. Suppose (RC1)–(RC3) hold, and S = {xC}. Then the set of K-plausible actions

coincides with the upper contour set of xC with respect to U .

Proof: Reason by contradiction, and suppose that some action x∗ ∈ Q<(x
C) is K-plausible.

Let (K, β) implement x∗. Choose an element Xi of the cover K such that xC ∈ Xi. Using

Remark 1 yields β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩Q≤(x

∗), and, since x∗ ∈ Q<(x
C),

β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩Q<(x

C). (11)

In turn, (11) yields

u
(
xC , RF

(
β(Xi)

))
≤ u

(
β(Xi), RF

(
β(Xi)

))
= U

(
β(Xi)

)
< U(xC). (12)

Coupling (11) and (12) gives

β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩
{
x : u

(
xC , RF (x)

)
< U(xC)

}
.

Applying Lemma B.2, we obtain β(Xi) ∈ S \ {xC}, contradicting S = {xC}. ■

Lemma B.4. Suppose (RC1)–(RC3) hold. Assume u12 > 0 and u2 > 0. Consider an

admissible pair (K, β) which implements some action x∗. Then, if x ∈ Q>(x
∗), we have

β(Xi) < x for every Xi ∈ K which contains x.

Proof: Let x ∈ Q>(x
∗), and pick an arbitrary Xi ∈ K containing x. Reason by contradiction,

and suppose that β(Xi) ≥ x. Then, RF being non-decreasing (since v12 > 0) and u2 > 0, we

obtain

u
(
x,RF

(
β(Xi)

))
≥ u

(
x,RF (x)

)
> u

(
x∗, RF (x

∗)
)
. (13)

Since (K, β) is admissible, we also have

u
(
β(Xi), RF

(
β(Xi)

))
≥ u

(
x,RF

(
β(Xi)

))
. (14)

Coupling (13) and (14) yields

u
(
β(Xi), RF

(
β(Xi)

))
> u

(
x∗, RF (x

∗)
)
.

29



By Remark 1, the previous inequality contradicts the assumption that (K, β) implements x∗.

■

Lemma B.5. Suppose (RC1) holds. Let (K, β) be an admissible pair. If β(Xi) < min{xC , x}
for some Xi ∈ K which contains x, then γ

(
β(Xi)

)
∈
(
β(Xi), x

]
.

Proof: Pick x ∈ X , and Xi ∈ K containing x. Since (K, β) is admissible:

η
(
x, β(Xi)

)
≤ 0. (15)

Now suppose that β(Xi) < min{xC , x}. In this case, the strictly concave function η
(
·, β(Xi)

)

attains (by virtue of (9)) a maximum at ϕ
(
β(Xi)

)
> β(Xi). From (15) and the fact that

β(Xi) < x we obtain (by definition of γ) β(Xi) < γ
(
β(Xi)

)
≤ x. ■

Proof of Theorem 3: Start with the case S = {xC}. Combining Lemma B.3 with Theorem

2 shows that in this case the sets of PI-, KI-, and K-plausible actions are all the same. As

PI ⊂ P ⊂ K, said set also coincides with the set of P-plausible actions.

The remainder of the proof deals with the case S ⊋ {xC}. Below, assume u12 > 0 and

u2 > 0 (the other cases are analogous). Recall that in this case S :=
{
x : x ≤ γ(x) ≤ xC

}
.

The function γ being continuous, S is a compact set. By Lemma B.1, we can thus find x̂ ∈ S
with x̂ < xC and

U
(
γ(x̂)

)
= min

x∈S
U
(
γ(x)

)
. (16)

To shorten notation, let γ̂ := γ(x̂); as x̂ < xC , note that, by definition of γ,

x̂ < γ̂ ≤ xC . (17)

We proceed to show that (a) all actions in Q≥(γ̂) are P-plausible, and (b) any K-plausible

action belongs to Q≥(γ̂).

All actions in Q≥(γ̂) are P-plausible. We know by Theorem 2 that all actions in Q≥(x
C) are

PI-plausible. So pick an action x∗ ∈ Q≥(γ̂) \ Q≥(x
C) (if there exists none, we are done).

Define

X1 := {x̂} ∪ Q>(x
∗),

and let P denote the partition of X made up of X1, and only singletons besides X1. Lastly,

let β : P → X be given by β(X1) = x̂ and β({x}) = x for all x ∈ X \ X1. We now show that
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(P, β) constitutes an admissible pair; notice that this amounts to showing that

η(x̃, x̂) ≤ 0, for all x̃ ∈ X1. (18)

As x∗ ∈ Q≥(γ̂), any x̃ ∈ Q>(x
∗) belongs to Q≥(γ̂). On the other hand, since γ̂ ≤ xC (see

(17)), Lemma B.1 shows that every x̃ ∈ Q>(x
∗) satisfies x̃ ≥ γ̂. Now, the function η(·, x̂) is

strictly concave, with η(x̂, x̂) = η(γ̂, x̂) = 0; it thus follows from (17) that η(x̃, x̂) ≤ 0 for all

x̃ ≥ γ̂. Combining the previous observations establishes (18); so (P, β) is admissible.

Finally, coupling (17) and Lemma B.1 yields U(γ̂) > U(x̂), giving in turn U(x∗) > U(x̂) =

U
(
β(X1)

)
(since x∗ ∈ Q≥(γ̂)). Using Remark 1 now shows that (P, β) implements x∗, since

X \ X1 ⊂ Q≤(x
∗).

All K-plausible actions belong to Q≥(γ̂). Reason by contradiction, and suppose that some K-

plausible action x∗ belongs to Q<(γ̂). Combining (17), Lemma B.1, and the fact that U is

continuous shows that we can find an action, say x†, such that:

x† < γ̂, (19)

and

x† ∈ Q>(x
∗) ∩Q<(γ̂). (20)

Now consider a pair (K, β) which implements x∗, and Xi an element of the cover K containing

x†. By virtue of (20), applying Lemma B.4 shows that

β(Xi) < x†. (21)

On the other hand, (17) and (19) show that

x† < γ̂ ≤ xC .

Hence, Lemma B.5 gives

β(Xi) < γ
(
β(Xi)

)
≤ x† < γ̂ ≤ xC . (22)

We thus obtain, firstly,

β(Xi) ∈ S, (23)
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and, secondly (using Lemma B.1),

U
(
γ
(
β(Xi)

))
< U(γ̂). (24)

The combination of (23) and (24) contradicts (16). Therefore, every K-plausible action must

belong to Q≥(γ̂). ■

Proof of Proposition 3: By definition of γ: η
(
γ(x), x

)
= 0 for all x in some neighborhood

O of xC . We thus have

u
(
γ(x), RF (x)

)
= u

(
x,RF (x)

)
, ∀x ∈ O.

Differentiating the previous expression with respect to x yields

u1

(
γ(x), RF (x)

)
γ′(x) + u2

(
γ(x), RF (x)

)
R′

F (x) = u1

(
x,RF (x)

)
+ u2

(
x,RF (x)

)
R′

F (x),

and, therefore,

γ′(x) =
u1

(
x,RF (x)

)
+R′

F (x)
[
u2

(
x,RF (x)

)
− u2

(
γ(x), RF (x)

)]

u1

(
γ(x), RF (x)

) , ∀x ∈ O \ {xC}. (25)

The numerator and denominator on the right-hand side of (25) tend to 0 as x → xC . Then,

by virtue of L’Hospital’s rule and using the fact that γ(x) → xC as x → xC :

lim
x→xC

γ′(x) = lim
x→xC

u11

(
x,RF (x)

)
+ 2u12

(
x,RF (x)

)
R′

F (x)− u12

(
x,RF (x)

)
R′

F (x)γ
′(x)

u11

(
γ(x), RF (x)

)
γ′(x) + u12

(
γ(x), RF (x)

)
R′

F (x)
. (26)

On the other hand, in a neighborhood of y = yC :

R′
L(y) =

−u12

(
RL(y), y

)

u11

(
RL(y), y

) .

Therefore,

R′
L(y

C) =
−u12(x

C , yC)

u11(xC , yC)
= lim

x→xC

−u12

(
x,RF (x)

)

u11

(
x,RF (x)

) = lim
x→xC

−u12

(
γ(x), RF (x)

)

u11

(
γ(x), RF (x)

) . (27)
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Combining (27) with (26) gives

γ′(xC) =
1− 2R′

L(y
C)R′

F (x
C) +R′

L(y
C)R′

F (x
C)γ′(xC)

γ′(xC)−R′
L(y

C)R′
F (x

C)
.

So γ′(xC) is a solution of

Z(Z − 2α) = 1− 2α,

where α := R′
L(y

C)R′
F (x

C). So either γ′(xC) = 1 or γ′(xC) = 2α − 1, whence γ′(xC) > 0 if

R′
L(y

C)R′
F (x

C) > 1/2.

Now suppose that u12u2 > 0 (the other case is similar), so that S =
{
x : x ≤ γ(x) ≤ xC

}
.

If R′
L(y

C)R′
F (x

C) > 1/2, then γ′(xC) > 0. This in turn implies the existence of x < xC such

that x < γ(x) < xC . Such an x belongs to S, so Lemma B.1 enables us to conclude that

U < U(xC). ■

Proof of Proposition 4: Just notice that the partition P in the part of the proof of Theorem

3 showing that all actions in Q≥(γ̂) are P-plausible satisfies P ∈ PI+. ■

C Appendix of Section 5

All the results in this appendix refer to the duopoly example of Section 2.3. Subsection C.1

characterizes the sets of plausible quantities. Subsection C.2 proves Proposition 6.

We refer here to the set of PI-plausible quantities as XPI
. We use similar notation for

the sets of KI-plausible, P-plausible and K-plausible quantities. Whenever a set X z has a

minimum (respectively, a maximum) we denote it xz, (resp. xz). For instance, xPI
denotes
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the smallest PI-plausible quantity. We define the following functions:

r∗(d) := 2−
√
2(1− d);

r∗∗(d) := 2−


 3

√√
57

9
+ 1


 (1− d)− 2(1− d)

3 3

√√
57
9

+ 1
;

r∗∗∗(d) :=
1

2

(
3−

√
5 + (1 +

√
5)d
)
;

r†(d) := 2−




3

√
3(9−

√
78)

3
+

1

3

√
3(9−

√
78)


 (1− d);

r††(d) := 2−
√
3(1− d);

r†††(d) := 2 +

(
1− 3

√
80− 9

√
79

3
− 1

3
3
√
80− 9

√
79

)
(1− d).

A firm acting as a monopolist would choose quantity xM := 1
2−r

.

C.1 Plausible Quantities

The unique best response of the follower to x, and the leader payoff from x when the follower

best responds to x are given, respectively, by

RF (x) =





1−(1−d)x
2−r

if x ≤ 1
1−d

,

0 if x > 1
1−d

,
and U(x) =





2(1−r+d)x−((2−r)2−2(1−d)2)x2

2(2−r)
if x ≤ 1

1−r
,

x−
(
1− r

2

)
x2 if x > 1

1−d
.

Function ϕ takes the form:

ϕ(x) =





0 if x ≤ r−(d+1)
(1−d)2

,

d+1−r+(1−d)2x
(2−r)2

if r−(d+1)
(1−d)2

< x < 1
1−d

,

xM if x ≥ 1
1−d

.

We characterize next the Cournot and the Stackelberg quantities.
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Lemma C.1. The set of Cournot quantities is as follows:

XC =





{
1

3−r−d

}
if r < d+ 1,

[
0, xM

]
if r = d+ 1,

{
0, 1

3−r−d
, xM

}
if r > d+ 1.

Proof:

(i) If r < d+ 1, then
r − (d+ 1)

(1− d)2
< 0 and

1

1− d
>

2

2− r
,

hence XC = {x∗} where x = x∗ solves

d+ 1− r + (1− d)2x

(2− r)2
= x. (28)

(ii) If r = d+ 1, then ϕ(x) = x ⇐⇒ x ≤ 1
1−d

, and xM = 1
1−d

.

(iii) If r > d+ 1, then
2

2− r
>

1

1− d
>

r − (d+ 1)

(1− d)2
> 0,

hence set XC includes only 0, xM , and the solution to (28).

■

In this appendix, xC
1 = 0, xC

2 = 1
3−r−d

, xC
3 = xM and xC = xC

2 .

Lemma C.2. The Stackelberg quantity, denoted xS, is as follows:

xS =





d+1−r
(2−r)2−2(1−d)2

if r < r∗∗∗(d),

1
1−d

if r∗∗∗(d) ≤ r ≤ d+ 1,

xM if r > d+ 1.

Proof: If r ≤ d + 1, then U ′(x) < 0 for any x > 1
1−d

, hence xS = [0, 1
1−d

]. Note that (i) U is

a quadratic function over this interval, (ii) U ′(0) > 0, and (iii) U ′
(

d+1−r
(2−r)2−2(1−d)2

)
= 0. Thus,

argmax
x∈X

U(x) ∈
{

1

1− d
,

d+ 1− r

(2− r)2 − 2(1− d)2

}
.
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A few steps of algebra yield:

U

(
1

1− d

)
≥ U

(
d+ 1− r

(2− r)2 − 2(1− d)2

)
⇐⇒ r ≥ r∗∗∗(d).

One can also check that: r ∈ [0, r∗∗∗(d)] ⇒ d+1−r
(2−r)2−2(1−d)2

∈ [0, 1
1−d

]. Thus, xS = d+1−r
(2−r)2−2(1−d)2

for r < r∗∗∗(d) and xS = 1
1−d

for r ∈ [r∗∗∗(d), d + 1]. Finally, if r > d + 1 then RF (x
M) = 0

and therefore argmaxx∈X U(x) = xM . ■

Next, we characterize the sets of plausible quantities.

Lemma C.3. The set of PI-plausible quantities is as follows:

XPI

=





[
xC , (2−r)2

(−r−d+3)((2−r)2−2(1−d)2)

]
if r < r∗∗(d),

[
xC ,

√
(1−d)(−2r−d+5)−r−d+3

(2−r)(−r−d+3)

]
if r∗∗(d) ≤ r < d+ 1,

X if r = d+ 1,

{xC
1 } ∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
if r > d+ 1.

Proof: (i) If r < d+1, then XC =
{
xC
}
, hence Proposition 2 ensures XPI

= Q≥(x
C). For

r < d+1, then (i) U ′(x) < 0 for any x ≥ 1
1−d

, and (ii) over the interval [0, 1
1−d

], function

U is either non decreasing or concave, or both. Function U is thus quasi-concave. As

U ′(xC) > 0, thenQ≥(x
C) = [xC , xPI

], where xPI
satisfies xPI

> xC and U(xPI
) = U(xC).

It is easy to verify that xC < (1 + d)−1, while r > r∗∗(d) ⇐⇒ xPI
> (1 + d)−1. A few

steps of algebra thus yield the expressions for xPI
.

(ii) Lemma C.1 ensures that if r = d+ 1, then XC =
[
0, xM

]
. For all x > xM , it is the case

that x > ϕ(x) = xM . Theorem 1 thus ensures XPI
= X .

(iii) If r > d + 1, the characterization of the set XPI
follows directly from Theorem 1 and

properties of ϕ. Note in particular that

� if x∗ ∈ {xC
1 }∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
, then (ϕ(x∗)−x∗)(xC

1 −x∗) ≥ 0 hence

x∗ ∈ XPI
;

� if instead x∗ /∈ {xC
1 }∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
, then (ϕ(x∗)−x∗)(xC

i −x∗) < 0

for i = 1, 2 and 3, hence x∗ /∈ XPI
.
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■

Lemma C.4. The set of KI-plausible quantities is as follows:

XKI

=




XPI

if r ≤ d+ 1,

{0} ∪
[

2(r−d−1)
2(1−d)2−(2−r)2

, 2
2−r

]
if r > d+ 1.

Proof: (i) If r < d+1, conditions (RC1)–(RC3) hold, hence XKI
= XPI

by Proposition 2.

(ii) If r = d + 1, then XPI
= X (Lemma C.3). As X ⊇ XKI

and XKI ⊇ XPI
, then

XKI
= XPI

.

(iii) Suppose r > d + 1. If x∗ ∈
(
0, 2(r−d−1)

2(1−d)2−(2−r)2

)
, then Q≤(x

∗) ∩ {x : ϕ(x) ≥ x} = ∅;

Theorem 2 ensures x∗ /∈ XKI
. If instead x∗ ∈ {0} ∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, 2
2−r

]
, then x∗ ∈

Q≥(x
C
1 ); Corollary 2 ensures x∗ ∈ XKI

.

■

Lemma C.5. The set of K-plausible quantities is as follows:

XK =





[
2(d+1−r)
(2−r)2

,
(2−r)2+

√
(2−r)4−8(1−d)2(d+1−r)2

(2−r)3

]
if r∗(d) ≤ r < d+ 1,

XKI
otherwise.

Proof: (i) If r < d+1, conditions (RC1)–(RC3) hold, and Theorem 3 applies. In particular,

if r < r∗(d), then S = {xC}, and therefore XK = XPI
, which in turn implies XK = XKI

.

If instead r ≥ r∗(d), then S = [0, xC ]. Note that xC < 1
1−d

, hence

γ(x∗) =
2(1 + d− r)− x(2− r)2 + 2x(1− d)2

(2− r)2
, for all x∗ ∈ [0, xC ].

One can then verify that 0 = argminx∈[0,xC ] U(γ(x)), and γ(0) = 2(d+1−r)
(2−r)2

. Solving the

equation U(x) = U(γ(0)), and noting that U is quasi-concave, yields

XK =

[
γ(0),

(2− r)2 +
√
(2− r)4 − 8(1− d)2(d+ 1− r)2

(2− r)3

]
.

(ii) If r = d+1, then XKI
= X (see Lemma C.4). As XK ⊇ XKI

and X ⊇ XK, we conclude

that XKI
= XK.

37



(iii) If r > d + 1, Lemma C.4 ensures that Q≥(0) = XKI
. As u(0, y) = 0 for any y ∈ X ,

clearly Q<(0) /∈ XK; thus, XK = XKI
.

■

The following remark is easy to verify.

Remark C.1. If r > d + 1, then Q≥(0) = {0} ∪
[

2(r−d−1)
2(1−d)2−(2−r)2

, 2
2−r

]
. If instead r ≤ d + 1,

then Q≥(0) = X .

Lemma C.6. The sets of P-plausible, PI+-plausible and K-plausible quantities coincide:

XP = XPI+

= XK.

Proof: We focus first on the set XPI+
. Recall that XPI+ ⊆ XK.

(i) Consider the case r ≥ d + 1. Lemmata C.3, C.4 and C.5 together with Remark C.1

imply that XK = Q≥(0).

Take any action x∗ ∈ Q≥(0). To see that x∗ ∈ XPI+
, let X1 = {x∗}, X2 = X \ {x∗},

β(X1) = x∗, K = {X1,X2} and define β : K → X as follows: β(X1) = x∗ and β(X2) = 0.

ThenK ∈ XPI+
, and the pair (K, β) implements x∗. Therefore x∗ ∈ XPI+

, which implies

that XPI+
= XK.

(ii) If r < d+ 1, then Proposition 4 ensures XPI+
= XK.

Finally, as XK = XPI+ ⊆ XP ⊆ XK, then XP = XK. ■

We conclude with an immediate corollary of Lemma C.5 that will prove useful in the next

subsection.

Corollary C.1. The smallest and the largest K-plausible actions correspond to:

{
xK, xK} =





{
xPI

, xPI
}
=
{
0, 2

2−r

}
if r ≥ d+ 1,

{
xP , xP} =

{
2(d+1−r)
(2−r)2

,
(2−r)2+

√
(2−r)4−8(1−d)2(d+1−r)2

(2−r)3

}
if r∗(d) < r < d+ 1,

{
xPI

, xPI
}
=

{
xC ,

√
(1−d)(−2r−d+5)−r−d+3

(2−r)(−r−d+3)

}
if r∗∗(d) < r < r∗(d),

{
xPI

, xPI
}
=
{
xC , (2−r)2

(−r−d+3)((2−r)2−2(1−d)2)

}
if r ≤ r∗∗(d).
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C.2 The Designer Problem

We prove each of the three parts of Proposition 6 separately. To prove the first part, we need

the next two lemmata, where we characterize the solution the following problems

maxx+ y s.t. (x, y) is K-plausible, (29)

and

minxy s.t. (x, y) is K-plausible. (30)

Lemma C.7. The unique solution of (29) is (xK, RF (x
K)).

Proof: Outcome (x, y) is K-plausible only if y = RF (x), and

x+RF (x) =





1+(1+d−r)x
2−r

, if x < 1
1−d

,

x, if x ≥ 1
1−d

.

If r ≤ d+1, then x+RF (x) is non-decreasing in x, and therefore xK ∈ argmaxx∈XK x+RF (x).

If r > d+ 1, then: (i) x+RF (x) is quasi-convex in x, (ii) xK = 2
2−r

(Corollary C.1), and (iii)

0 +RF (0) =
1

2−r
< xK ≤ xK +RF (x

K). The lemma follows. ■

Lemma C.8. If r ≥ 2d, the unique solution of (30) is (xK, RF (x
K)).

Proof: If r ≥ d+ 1 then xK = 2
2−r

. Note that r ≥ 2d ⇐⇒ > 2
2−r

≥ 1
1−d

⇐⇒ RF (
2

2−r
) = 0.

The proof of Lemma C.3 shows that xPI ≥ 1
1−d

if r ∈ (r∗∗(d), d + 1). As xK ≥ xPI
, then

r ∈ (r∗∗(d), d + 1) ⇒ RF (x
K) = 0. Let f(x) := xRF (x). As f(x) ≥ 0 for all x ∈ X , we

conclude that xK = argminx∈XK f(x) for r > r∗∗(d). Finally, if r ≤ r∗∗(d), then

{
xK, xK} =

{
xC ,

(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)

}
.

Function f is convex, and

f

(
(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)

)
≥ f(xC) ⇐⇒ r ≥ 2d.

The lemma follows. ■

Proof of Proposition 6, part (i). Any K-plausible quantity x is associated with consumer
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surplus:

CS(x,RF (x)) =
(x+RF (x))

2

2
− dxRF (x).

Let g(x) := CS(x,RF (x)). If r ≥ 2d, then Lemmata C.7 and C.8 together ensure that

xK = argmaxx∈XK g(x).

Suppose that r < 2d, so that 2
2−r

< 1
1−d

. We now prove that g(·) is increasing over the set

XK. First note that, in this parameter region, g(x) = a0 + a1x+ a2x
2, where

a0 :=
1

2(2− r)2
, a1 :=

(1− r)(1− d)

(2− r)2
, and a2 :=

(d+ 1− r)2 + 2(2− r)(1− d)d

2(2− r)2
.

Function g is then convex, and argminx g(x) = −a1
2a2

. As 2d < r∗∗(d), then r < 2d implies

xK = xC . Note that

xC >
−a1
2a2

⇐⇒ (2− r)(2− d)(d+ 1− r)

(3− r − d) ((d+ 1− r)2 + 2(2− r)(1− d)d)
> 0.

This inequality holds, hence g(·) is increasing over the set XK. ■

To prove the second part of Proposition 6 we need the following lemma.

Lemma C.9. For any d ∈ [0, 1),

2d < r††(d) < r†††(d) < r†(d) < r∗(d) < d+ 1.

Proof: Functions 2d, r††(d), r†††(d), r†(d), r∗∗∗(d), and 1 + d are linear and take value 2 for

d = 1. To prove the lemma it is therefore sufficient to verify that their slopes are ordered

appropriately. The slopes are shown in Table 1 ■

Function Slope
2d 2

r††(d)
√
3 ≈ 1.732

r†††(d) 1
3

3
√

80− 9
√
79− 1

3
+ 1

3
3
√

80−9
√
79

≈ 1.538

r†(d)
3
√

3(9−
√
78)

3
+ 1

3
√

3(9−
√
78)

≈ 1.518

r∗(d)
√
2 ≈ 1.414

d+ 1 1

Table 1: Slopes of functions from Lemma C.9
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Proof of Proposition 6, part (ii). Any K-plausible quantity x is associated with producer

surplus

PS(x,RF (x)) = (x+RF (x))−
(
1− r

2

)
(x+RF (x))

2 − (r − 2d)xRF (x),

=





1−2rx+4dx−x2+4rx2−r2x2−6dx2+3d2x2

2(2−r)
if x < 1

1−d
,

x−
(
1− r

2

)
x2 if x ≥ 1

1−d
.

(31)

Let h(x) := PS(x,RF (x)). If r > d + 1, then xC
1 ∈ XK, xC

3 ∈ XK, RF (x
C
3 ) = xC

1 = 0 and

RF (x
C
1 ) = xC

3 . As

xC
3 +RF (x

C
3 ) = xC

1 +RF (x
C
1 ) = argmax

x∈X
x−

(
1− r

2

)
x2,

and xC
3 RF (x

C
3 ) = xC

1 RF (x
C
1 ) = 0, we conclude that both xC

1 and xC
3 maximize producer surplus

among K-plausible quantities. The argument can be extended to the case r = d+ 1.

Suppose now that r < d + 1. It is easy to check that h(·) is decreasing over the interval

[ 1
1−d

, 2
2−r

]. Note that 1
1−d

∈ XK. For x ∈ [0, 1
1−d

] instead, g(x) = a0 + a1x+ a2x
2, where

a0 :=
1

2(2− r)
, a1 := −r − 2d

2− r
< 0, and a2 :=

−r2 + 4r + 3d2 − 6d− 1

2(2− r)
.

Specifically, a2 > 0 if and only if r > r††(d). Therefore for r ∈ [r††(d), 1 + d), the function

g takes the highest value either at 1
1−d

, or at xK. Note that g
(

1
1−d

)
= PS1 := r−2d

2(1−d)2
. In

order to characterize g(xK), we distinguish two cases. If r < r∗(d), then xK = xC . Note

that g
(

1
1−d

)
> g(xC) ⇐⇒ r > r†(d). Lemma C.9 ensures that r††(d) < r†(d). If instead

r ≥ r∗(d), then xK = 2(d+1−r)
(2−r)2

, and

g

(
1

1− d

)
> g

(
2(d+ 1− r)

(2− r)2

)
⇐⇒

A ·
(
r3 + r2d− 7r2 − 4rd+ 16r − 6d3 + 18d2 − 14d− 6

)
> 0,

where

A :=
(d+ 1− r) (r2 − 2rd− 2r + 2d2 + 2)

2(2− r)5(1− d)2
> 0.

This inequality holds in the interval [r†††(d), 1 + d]. As r∗(d) > r†††(d) (Lemma C.9), we
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conclude that
1

1− d
= arg max

x∈XK
g(x) for r ∈ [r†(d), 1 + d],

and

xC = arg max
x∈XK

g(x) for r ∈ [r††(d), r†(d)].

Consider next r ∈ [2d, r††(d)). For these parameter values the function g is concave

over the interval [0, 1
1−d

]. The global maximum obtains at x = −a1/2a2 ≤ 0. Therefore

argmaxx∈XK g(x) = xK. As r††(d) < r∗(d), then xK = xC .

Finally, consider the case r < 2d. For these parameter values, the function g is concave

over the interval x ∈ [0, (1− d)1], and reaches its maximum at

−a1
2a2

=
−(r − 2d)

r2 − 4r − 3d2 + 6d+ 1
> 0.

As r < 2d, then (i) xK = xC , and (ii) xC > −a1
2a2

⇐⇒ r < r††(d). Noting that r††(d) > 2d

(Lemma C.9) concludes the proof. ■

Proof of Proposition 6, part (iii): Any K-plausible quantity x is associated with total

welfare

W (x,RF (x)) = CS(x,RF (x)) + PS(x,RF (x)) = Q(x)− 1− r

2
Q(x)2 − (r − d)xRF (x),

where Q(x) = x+RF (x) is the total quantity.

Let us first consider the case r ≥ 2d. Define f(Q) := Q − 1
2
(1 − r)Q2. Whenever r ≥ 0,

the function f is increasing over the interval X . To see this, note that (i) if r > 1 then f is

convex and argmin f = (1− r)−1 < 0; (ii) if r = 1, then f is increasing for all Q; (iii) if r < 1

then, f is concave and argmax f = (1− r)−1 > 2
2−r

. Therefore for r ≥ 2d ≥ 0 the function f

is increasing in total quantity Q for any Q(x) ∈ X . It is easy to verify that Q(x) ∈ X for any

x ∈ X . By Lemma C.7, argmaxx∈XK f(Q(x)) = xK. Moreover, by Lemma C.8, when r ≥ 2d,

then argminx∈XK xRF (x) = xK. We conclude that argmaxx∈XK W (x) = xK, for r ≥ 2d.

Suppose that instead r < 2d. In this case 1
1−d

> 2
2−r

, hence for all x ∈ X it is the case
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that RF (x) > 0 and W (x) = a0 + a1x+ a2x
2, where

a0 :=
3− r

2(2− r)2
; a1 := 1− (3− r)(1− d)

(2− r)2
; and

a2 :=
(d+ 1− r)2 + (2− r)(1− d)(3− d)− (2− r)3

2(2− r)2
.

There are three cases, depending on the sign of a2.

(i) Consider the case a2 = 0. This happens if and only if

d = d∗(r) := 1− (2− r)
√
(2− r)2 − 1

3− r
.

Note that (i) d∗(r) is strictly increasing over the interval [0, 1], (ii) d∗(1) = 1, and (iii)

2d∗(r) = r ⇐⇒ r = 1/3. So a2 = 0 requires that r ∈ (1
3
, 1] and d = d∗(r). Replacing d

with d∗(r) in a1 gives:

a1 = 1−
√

1− 1

(2− r)2
> 0.

Therefore argmaxx∈XK W (x) = xK.

(ii) Suppose that a2 > 0. Note that (i) a2 > 0 if and only if d < d∗(r), and (ii) for a2 > 0

function W (x) is convex and reaches a minimum at −a1
a2

. We distinguish two cases.

(a) If r ≤ 1, then a1 ≥ 0. To see this, note that (i) a1 is increasing in d, so a1 for d = r
2

is strictly smaller than for any d ∈ ( r
2
, d∗(r)), and (ii) evaluating a1 for d = r

2
, gives

1− r

2(2− r)
≥ 0.

As −a1
a2

≤ 0, then argmaxx∈XK W (x) = xK.

(b) Let r > 1. As r < 2d, Corollary C.1 and Lemma C.9 together ensure that xK = xC .

Now,

xC − −a1
2a2

=
A(r, d)

B(r, d)
,
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where

A(r, d) :=
(2− r)(d+ 1− r)

(3− r − d)
,

B(r, d) := (1− r + d)2 + (2− r)(1− d)(3− d)− (2− r)3.

Clearly A(r, d) > 0 for the relevant values of r and d. We show that B(r, d) > 0.

To see this, note that (i) B(r, d) is convex in d, with minimum at d = 1, therefore

B(r, d) decreasing in d ∈ [0, 1], and (ii) B(r, 1) = (2− r)2(r − 1) > 0 for r > 1.

Again, as W (x) is increasing in x over plausible values, it is maximized by xK.

(iii) Finally, suppose that a2 < 0. In this region W (·) is concave and reaches a maximum at
−a1
2a2

. As parameters satisfy min {2d, 1} > r, d > d∗(r), to conclude the proof it suffices

to show that
−a1
2a2

≥ xK, ∀r < 1 and ∀d > d∗∗(r),

where

d∗∗(r) :=





0 if r ≤ 0,

r
2

if 0 < r ≤ 1
3
,

d∗(r) if r > 1
3
.

Simple algebra shows that 2d < r∗∗(d) for all d ∈ [0, 1], hence r < 2d ensures r < r∗∗(d).

Corollary C.1 and Lemma C.9 together thus ensure that

xK =
(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)
.

Therefore
−a1
2a2

− xK =
F (r, d)

D(r, d)E(r, d)(3− r − d)

where

D(r, d) := (2− r)3 − (1− r + d)2 − (2− r)(1− d)(3− d);

E(r, d) := (2− r)2 − 2(1− d)2;

F (r, d) := (2− r)(3− r − d)(3r − 3r2 + r3 − 2d+ rd− r2d+ 2d2)

+ (2− 4r + r2 + 4d− 2d2)((2− r)3 − (2− r)(1− d)(3− d)− (1− r + d)2).
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Clearly (3 − r − d) > 0 for all (r, d) such that r < 1, and d > d∗∗(r). We show next

that for these parameter values D > 0 and E > 0. Note that both D and E are concave

functions of d, and they both reach a maximum at d = 1. We conclude that both D

and E are increasing functions of d for all d ∈ [0, 1]. We consider, in turn, cases r ≤ 0,

r ∈ (0, 1
3
] and r ∈ (1

3
, 1).

(a) If r ≤ 0, then d∗∗(r) = 0. We just established thatD(r, d) ≥ D(r, 0) for all d ∈ [0, 1].

As D1(r, 0) < 0, then D(r, d) ≥ D(r, 0) ≥ D(0, 0) = 1. Similarly, E(r, d) ≥ E(r, 0)

for all d ∈ [0, 1]. As E1 < 0, then E(r, d) ≥ E(r, 0) ≥ E(0, 0) = 2.

(b) If r ∈ (0, 1
3
], then d∗∗(r) = r

2
, and D(r, d) ≥ D(r, r

2
) = 1/4(2 − r)2(1 − 3r) ≥ 0,

while E(r, d) ≥ E(r, r
2
) = 1/2(2− r)2 > 0.

(c) If r ∈ (1
3
, 1): then d∗∗(r) = d∗(r), and D(r, d) ≥ D(r, d∗(r)) = 0, while E(r, d) ≥

E(r, d∗(r)) = (2−r)2(r+1)
3−r

> 0.

In the rest of the proof we show that F (r, d) ≥ 0 for all r ≤ 1 and d ∈ [0, 1].

For any d ∈ [0, 1], the function F (r, d) is a 4th degree polynomial function of r. To prove

that it is non-negative for all r ≤ 1 and d ∈ [0, 1], it suffices to show that for all d ∈ [0, 1]: (i)

F (1, d) > 0 and (ii) F (·, d) does not have any real roots in (−∞, 1). To prove the first claim,

note that:

F (1, d) = 4− 17d+ 28d2 − 18d3 + 4d4.

All four roots of this polynomial are complex, and, for example, F (1, 1) = 1 > 0. Therefore

F (1, d) > 0 for all d ∈ [0, 1].

To prove the second claim, we use Sturm’s theorem. For any d ∈ [0, 1], let: p0(r) :=

F (r, d), p1(r) := F1(r, d), p2(r) = − rem(p0(r), p1(r)), p3(r) = − rem(p1(r), p2(r)) and p4(r) =
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− rem(p3(r), p4(r)), where rem(a, b) is the remainder of the Euclidean division of a by b. So

p1(r) = 4r3 + 6r2d2 − 15r2d− 15r2 − 24rd2 + 60rd+ 12r − 2d4 + 10d3 + 6d2 − 46d;

p2(r) = − 1

16
(1− d)2

(
32 + 60r − 27r2 − 102d− 72rd+ 36r2d

+76d2 + 24rd2 − 12r2d2 − 22d3 + 4d4

)
;

p3(r) =
32(1− d)2

3(2d− 3)4

(
16rd4 − 104rd3 + 212rd2 − 126rd− 24r

−52d4 + 314d3 − 600d2 + 335d+ 55

)
;

p4(r) =
(1− d)4(2d− 3)4 (64d6 − 672d5 + 2340d4 − 2984d3 + 252d2 + 1560d+ 197)

64 (8d4 − 52d3 + 106d2 − 63d− 12)2
.

Sturm’s theorem ensures that the number of real roots of F (·, d) in (−∞, 1] is equal to

V (−∞) − V (1), where V (r) denote the number of sign changes at r. We prove below that

V (−∞) = V (1) = 2, so that indeed the theorem ensures that F (·, d) does not have any real

roots in (−∞, 1).

First, we establish that V (−∞) = 2. To see this note that, at r → −∞ the sign of the

polynomial are

� positive for p0(r) (a 4th degree polynomial with leading coefficient 1);

� negative for p1(r) (a 3rd degree polynomial with leading coefficient 4);

� positive for p2(r) (a 2nd degree polynomial with leading coefficient 3
4
(1− d)2

(
3
2
− d
)2

>

0);

� positive for p3(r) (a linear function with negative slope for all d ∈ [0, 1]).

� positive for p4(r) (a positive constant).

The number of sign changes is therefore 2. Next, we establish that V (1) = 2. To see this note

that, at r = 1 the sign of the polynomial are

� positive for p0(r), p3(r) and p4(r);

� positive if d < a1 and negative if d > a1, where a1 ≈ 0.278 for p1(r);

� is negative if d < a2 and positive if d > a2, where a2 ≈ 0.845 for p2(r).
26

For any d ∈ [0, 1], the number of sign changes is indeed 2. ■

26The exact values of a1 and a2 do not change the conclusions.
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