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Abstract

We study a buyer-seller problem of a novel good for which the seller does not

yet know the production cost. A contract can be agreed upon at either the ex-

ante stage, before learning the cost, or at the ex-post stage, when both parties will

incur a costly delay, but the seller knows the production cost. We show that the

optimal ex-ante contract for a profit-maximizing seller is a fixed price contract with

an “at-will” clause: the seller can choose to cancel the contract upon discovering

her production cost. However, sometimes the seller can do better by offering a

guaranteed-delivery price at the ex-ante stage and a second price at the ex-post

stage if the buyer rejects the first offer. Such a “limited commitment” mechanism

can raise profits, allowing the seller to make the allocation partially dependent on

the cost while not requiring it to be embedded in the contract terms. Analogous

results hold in a model where the buyer does not know her valuation ex-ante and

offers a procurement contract to a seller.

1 Introduction

Consider two scenarios. In the first scenario, a seller faces demand for a good but is

uncertain how much it will cost to produce it. For example, a pharmaceutical company

(a seller) produces a vaccine for the national health authority (a buyer) to immunize a

population against a new disease. The value of the vaccine of a given level of efficacy is

(privately) known to the buyer. The seller is unsure of how much it will cost to produce

the vaccine, a cost that will be (privately) revealed to the seller only at a later time

after enough research is done. In the second scenario, a buyer is considering procuring a

good but is uncertain of the benefits she will incur. For example, a defense department
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is considering whether to procure a new weapons system. The seller (privately) knows

how much the system will cost, but the defense department is unsure of the system’s

future usefulness. This uncertainty may resolve over time, but waiting will also delay the

delivery of the weapons.

In both scenarios, we have a buyer-seller framework with a principal, who will be

ex-post privately informed of her valuation for a novel good, but who does not have that

information at the ex-ante stage, whereas the counterpart is immediately (and privately)

informed. We ask the question: how should this principal sell (or buy) the good? Should

she contract at the ex-ante stage, when she does not yet have her information, or at the

ex-post stage, when she will have the information, but at the cost of delay?

To study this problem, we consider a model where a risk-neutral seller faces a risk-

neutral buyer with unit demand.1 The buyer has a private valuation for the object,

and the seller has a private cost of production. We depart from the standard setting

by allowing for three stages. At time 0 (the ex-ante stage) the buyer already knows her

valuation, while the seller will only learn her cost at time 1 (the ex-post stage). We assume

the seller can offer the buyer a contract at the ex-ante stage or at the ex-post stage (or

both). We assume that the contract can only be executed one period after it is agreed.

So, payoffs are either realized at time 1 or at time 2, and we assume that both buyer

and seller discount such payoffs with the same discount factor. In the vaccine example,

these assumptions capture the difference between (ex-ante) contracting before the vaccine

is fully developed so that development and testing are done together and deployment can

be executed immediately after these are completed, and (ex-post) contracting once the

vaccine is fully developed, which requires a delay in deployment.

In this context, we consider several mechanisms a profit-maximizing seller could choose.

The existing literature (Myerson (1981), Riley and Samuelson (1981), and Yilankaya

(1999)) shows that when both buyer and seller contract with knowledge (public or private)

of their own valuation or cost, the optimal mechanism for the seller will be a take-it-or-

leave-it offer to sell the good at a posted price. This price will depend on the seller’s cost

but will be the same regardless of whether it is the seller’s private information or not. In

our setting, these results suggest two natural mechanisms. First, in the ex-ante fixed price

(EAFP) mechanism, the seller immediately makes a take-it-or-leave-it offer of a price to

the buyer, using her expected cost to determine such price. Alternatively, in the ex-post

optimal (EPO) mechanism, the seller does not make an offer immediately but waits for

her cost to be realized and makes the take-it-or-leave-it offer using this realization to de-

1We focus on the case where the principal is the seller, but our results apply equally to the reverse
case where the principal is the buyer.
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termine her optimal price.2 In both cases, the seller commits to a take-it-or-leave-it offer

where the good is sold if and only if the offer is accepted. The EAFP mechanism allows

trade to occur sooner than the EPO mechanism but forces the seller to offer a price that

only reflects her expected cost rather than her actual cost.

We show that neither the EAFP or the EPO mechanisms are optimal. In particular,

we show that the former is always dominated by an ex-ante mechanism which gives the

seller an option of backing out of the transaction altogether if her cost turns out to be too

high. The seller fixes a price p, but while in the EAFP contract the seller has to deliver

the good if the buyer accepts (a “specific-performance” clause), in this new contract, she

can still decide to cancel the order, refunding the price (an “at-will” clause).3 We prove

that this contract is the optimal full-commitment contract available to the seller at the

ex-ante stage and therefore call this contract the ex-ante optimal (EAO) contract.

Still, while the seller can fully commit at the ex-ante stage, she cannot commit to a

mechanism that depends on something she doesn’t yet know (i.e., the production cost)

unless such mechanism satisfies incentive compatibility constraints on herself as well as

the buyer. This opens the possibility that ex-post mechanisms may improve on the seller’s

profit. As discussed above, once the seller knows her private information, she optimally

offers a contract where the price embeds her valuation without the need for this contract to

be incentive compatible for her. Indeed, we show that if the discount factor is sufficiently

high, then the seller will prefer to use the optimal EPO mechanism over the optimal EAO

mechanism.

More surprisingly, we also show that the seller can always do better than the EPO

mechanism by using what we call the dynamic (D) mechanism. In this mechanism, the

seller offers a price at the ex-ante stage, and if the buyer does not accept the first price, a

second price is offered at the ex-post stage. If the buyer accepts the offer at the ex-ante

stage, the seller commits to deliver the good at that price regardless of the realization of

her cost (a specific-performance clause, as in the EAFP mechanism), but if the first price

is rejected, the seller makes a take-it-or-leave-it offer at the ex-post stage with a second

price (as in the EPO mechanism). A crucial point here is that seller does not commit ex-

ante to what the price will be at the ex-post stage, nor indeed does she commit to offering

a price at all. We show that the optimal D mechanism is strictly better than the optimal

EPO mechanism: the seller will always choose a period-1 price that the buyer accepts

with positive probability.4 But then, this leads to our main result: if the discount factor

2This is ex-post optimal because Yilankaya (1999) shows that once the seller knows her valuation ω,
it is optimal for her to offer some price p (ω) which the buyer can either accept or reject.

3We adopt this terminology from Aghion, Dewatripont and Rey (1994).
4The EPO mechanism is a special case of the D contract in which the time 0 price is always too

high for any buyer to accept, which is equivalent to waiting for time 1 to offer a contract. Thus, the
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is sufficiently high, then the best mechanism for the seller amongst those we discussed is

the D mechanism; conversely, for lower values of the discount factor, the EAO mechanism

is the best one. To understand the trade-off, observe that the D mechanism allows the

seller to make two, sequential, price offers. At time 0, a first price is offered which is

independent of the realized cost because this is unknown at that stage. But at time 0, no

commitment is made as to what the seller will do at time 1. At time 1, the cost is realized

and if the buyer rejects the time 0 price, the seller will always find it optimal to set a

new price that takes the cost realization into account. Thus, if the discount factor is high

enough, the dynamic mechanism can be an improvement over the EAO mechanism as it

allows the seller to adapt the time 1 price to the cost realization while skimming off the

highest buyer types with the time 0 price; contracts where the seller commits at time 0 to

a time 1 price as a function of the realized cost cannot have this feature as the seller may

be tempted to lie about the realized cost, to get a better price. On the other hand, if the

discount factor is sufficiently low, the EAO mechanism is optimal because the seller puts

little value on what she can get at the ex-post stage and amongst ex-ante mechanisms it

is better to impose an at-will clause.

Next, we discuss how our work relates to the existing literature. Section 2 describes

our model and section 3 presents the benchmark mechanisms EAFP and EPO. In sec-

tion 4 we introduce the EAO and D mechanisms and theorem 1 gives our main result.

Section 5 discusses these results and some natural extensions. Most proofs are relegated

to appendix A; in appendix B we show, through an example, how our main results con-

tinue to hold in a setting where we reverse the roles of buyer and seller. There, the buyer

is the principal but does not yet know her valuation at the ex-ante stage. Finally, in ap-

pendix C we consider examples of alternative dynamic mechanisms and show that these

do not improve over the mechanisms featured in theorem 1.

Related literature. As we already discussed above, the paper builds on the literature

on mechanism design, starting with Myerson (1981), Riley and Samuelson (1981). There

is also an important literature in dynamic mechanism design. In this literature, dynamic

contracts may be optimal if buyers arrive over time (Gershkov and Moldovanu, 2009;

Board and Skrzypacz, 2016) or buyers’ valuations change or buyers learn about their

values over time Baron and Besanko (1984); Courty and Li (2000); Battaglini (2005); Eső

and Szentes (2007); Board (2008); Pavan, Segal and Toikka (2014); Garrett (2016); Ely,

Garrett and Hinnosaar (2017). However, starting from Stokey (1979); Conlisk, Gerstner

and Sobel (1984) this literature has emphasized that if buyers’ valuations are persistent

D mechanism is, by construction, no worse for the seller than the EPO mechanism. That it is strictly
better is not obvious, as the lack of commitment on the time 1 price triggers Coasian dynamics.
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over time, there is no benefit in delaying the trade, i.e., intertemporal price discrimination

does not help a monopolist. Our work differs from this literature in two ways: it is the

principal who learns about her type over time and she does so only once (in this sense,

the model is static). In such situations however, we show that if the discount factor is

sufficiently high, dynamic pricing, without commitment to future prices, may be optimal.

The fact that the principal privately learns over time connects our setting to informed

principal problems, but with some crucial differences. The literature on the informed

principal problem (Myerson, 1983; Maskin and Tirole, 1990, 1992; Skreta, 2011; Mylo-

vanov and Tröger, 2012, 2014) assumes that the principal has some valuable information

and lacks commitment not to use this information in the contract design stage. For the

specific setting of a seller with private cost facing a privately informed buyer, Yilankaya

(1999) shows that it does not matter that the seller lacks the commitment not to use her

information at the contract design stage: the optimal mechanism is a take-it-or-leave-it

price that depends on her cost but is the same whether the cost is private or public in-

formation. Put another way, the seller is better off when she knows her cost, but once

she does, whether this is common knowledge or not does not matter.5 We expand on this

literature by looking at the case where the seller can either contract before she knows

her cost or after she does, but in the latter case she incurs a cost of delay. Crucially, as

the cost of the seller remains private information once known, we assume that the seller

cannot write an ex-ante contract where she truthfully reveals her cost ex-post unless doing

so is incentive compatible.

There is also a strong connection to the literature on limited commitment and Coasian

dynamics. Since Coase (1972) and Bulow (1982) it has been known that a monopolist who

lacks commitment power may not be able to exploit his position, as forward-looking buyers

would simply wait and get a better price in the future. The literature on mechanism design

with limited commitment has taken this as a starting point and studied various ways how

the principal can at least partially overcome this problem Bester and Strausz (2001);

Vartiainen (2013); Gerardi, Hörner and Maestri (2014); Deb and Said (2015); Doval and

Skreta (2019); Fugger, Gretschko and Pollrich (2019); Liu, Mierendorff, Shi and Zhong

(2019); Doval and Skreta (2022). In our model, the seller cannot be relied upon to report

her future cost truthfully and thus needs to ensure that an ex-ante contract is designed

in a way that is incentive-compatible not just for the buyer, but for her future self. By

delaying contracting this issue is resolved, but at the cost of delayed execution. One

5There are other settings where this lack of commitment does not matter. Tan (1996), for example,
shows that, in a procurement auction context, the buyer benefits from knowing her valuation but once
this is known, the optimal mechanism is an auction with a reserve price that is the same regardless of
whether this is private or public information. It is easy to see that our results would extend to this
setting.
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way to interpret our main findings is that in such situations, it may be in the principal’s

interest to voluntarily choose a limited commitment contract (by not committing to a

future price) as a way to overcome her incentive problem.6

Perhaps the closest paper to ours in terms of application is Schmitz (2022), which

studies a similar bilateral trade problem, where a buyer wants to procure a novel object,

but the seller’s costs are only revealed with delay. He shows that an at-will contract, which

allows the seller to walk away if the costs turn out to be too high, may generate more

social surplus than a specific-performance contract, which requires the seller to deliver an

object no matter the costs. The crucial difference is that in our setting it is the principal

whose private information is learned with delay, whereas in Schmitz, it is the agent. In

our setting, at-will contracts always dominate static specific-performance contracts (in our

terminology, EAO and EAFP mechanisms, respectively), because we focus on optimality.

More importantly, we show that when the principal has delayed (private) information,

a dynamic contract with limited commitment may be preferable: this is never the case

when it is the agent that faces information delay.

2 Model

There is a single indivisible object. The buyer has a private valuation θ in the interval

[0, 1] for the object. The seller has a private cost ω in the interval [0, 1] for delivering the

object, but learning this cost takes time. Both have a common discount factor δ ∈ (0, 1).

Delivering the object takes time and can only happen one period after the parties agree

to trade. Both agents are risk-neutral. We assume that θ has a distribution F with an

almost everywhere (a.e.) positive density f while ω has a distribution G with an a.e.

positive density g.7 We denote with

ψ(θ, θ) := θ − F (θ)− F (θ)

f(θ)

the virtual valuation of F when this is truncated to the interval [0, θ] for some θ ≤ 1.

We assume F is regular: ψ(θ, 1) is a strictly increasing function of ω.8 Finally, we denote

6There is also a connection to renegotiation proof contracts (Hart and Tirole, 1988; Dewatripont,
1988), which is another form of limited commitment: principals lack the ability to commit to a contract
that may be ex-post Pareto dominated. Typically, this literature looks for contracts that won’t be
renegotiated, whereas our dynamic mechanism can be interpreted as a sequence of distinct contracts.

7Our results can be generalized to a setting where θ and ω are distributed over arbitrary intervals, as
long there is a non-empty intersection between such intervals. Using the [0, 1] interval greatly simplifies
the exposition.

8If ψ(θ, 1) is strictly increasing in θ, then so is ψ(θ, θ) for any value of θ. A standard way to guarantee
this is to assume that the hazard rate of F is (weakly) increasing.
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with G(x) :=
∫ x
0
G(ω)dω the left hand integral of the cumulative G.

The seller’s goal is to maximize the expected ex-ante profit (from now on, just profit).

We use πM to denote the maximized profit from mechanism (of class)M and ΠM(·) as the
corresponding profit function of the choice variables of a particular mechanism (typically,

but not always, this will be a price).

The timing is as follows. At time 0 (the ex-ante stage), the seller does not know the

cost ω and can offer a contract specifying under which circumstances and at which price

the object is delivered at time 1 (the ex-post stage). The buyer can accept or reject the

contract. If a contract was offered and accepted, we say that the contract was agreed.

At time 1, the seller learns the cost ω. If a contract was agreed at time 0, its terms are

implemented (i.e., the object may be delivered and transfers paid). If a contract was not

agreed, the seller can offer a new contract which the buyer can accept or reject. If this

latter contract is offered and agreed, its terms are implemented at time 2 and the resulting

payoffs are discounted by δ. We call a sequence of such contracts a mechanism.

We are looking for outcomes that are implementable in dominant strategies. When we

look at full commitment contracts, we can focus without loss of generality on direct mech-

anisms, (qs(θ, ω), ts(θ, ω)), where s ∈ {0, 1} specifies whether the mechanism was agreed

at time 0 or 1, qs(θ, ω) ∈ [0, 1] specifies the probability that the object is delivered (when

the buyer announces value θ and the seller cost ω) and ts(θ, ω) ∈ R is the corresponding

transfer (from the buyer to the seller if positive).

3 Benchmarks

As discussed in the introduction, Yilankaya (1999) considers the same problem we face,

except that at time 0 the seller already (privately) knows the cost of the object. He shows

that the optimal mechanism consists of a take-it-or-leave-it offer of a price to the buyer, a

price that will, in general, depend on seller’s cost. This suggests two natural solutions to

the optimality problem in our case. The first entails the seller making a take-it-or-leave-it

offer of a price to the buyer at time 0, using the expected cost instead of the realized

cost. The other is for the seller to wait until time 1, learn the actual cost, and then make

a take-it-or-leave-it offer of a price to the buyer, given such cost. We will call the first

mechanism the Ex-ante Fixed Price mechanism (EAFP) and the second mechanism the

Ex-post Optimal mechanism (EPO). We can apply the Yilankaya (1999) result, which

tells us that the optimized EPO mechanism is best amongst the mechanisms available to

the seller at time 1 (hence the name), but it incurs a delay and the resulting payoffs will

have to be discounted.

The EAFP mechanism commits the seller to a posted price p independently of cost
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or buyer’s type and delivers the object to the buyer if and only if the buyer accepts the

price. Therefore buyer types θ ≥ p accept the offer and the expected cost of delivering

the object is EG[ω]. This immediately implies:

Proposition 1. The maximal profit for the seller in the EAFP mechanism is

πEAFP =
[
1− F (pEAFP )

] (
pEAFP − EG[ω]

)
> 0,

where the optimal price pEAFP ∈ (0, 1) is the unique solution to ψ(p, 1) = EG[ω].

Given the regularity of F the proof is standard, but note that pEAFP ∈ (0, 1) guaran-

tees that πEAFP is strictly positive.

In the EPO mechanism, the seller does not offer anything at time 0 and then offers

the optimal mechanism at time 1, after learning the cost ω.

Proposition 2. The maximal profit for the seller in the EPO mechanism is

πEPO = δ

∫ 1

θ∗
G(ψ(θ, 1))f(θ)dθ,

where θ∗ ∈ (0, 1) is the value of θ that solves ψ(θ, 1) = 0.

As discussed, that the maximized EPO mechanism is optimal follows from Yilankaya

(1999). In appendix A we provide a proof that allows us to calculate πEPO explicitly.

A comparison of the two mechanisms is then an almost immediate consequence of the

two results above:

Corollary 1. There exists a value δ∗ ∈ (0, 1) such that πEPO > πEAFP for all δ > δ∗ and

πEPO < πEAFP for all δ < δ∗.

Proof. In the limiting case where δ = 1, the Yilankaya (1999) result implies πEPO will

provide the highest profits obtainable by the seller even when the cost is unknown at time

0: the seller faces no loss of profits by just waiting for the cost to be revealed. In the EPO

mechanism, trade occurs if and only if the virtual valuation is no smaller than the realized

cost, whereas in the EAFP mechanism (which does not depend on δ), trade occurs if and

only if the virtual valuation is no smaller than the expected cost. Therefore πEAFP must

be strictly smaller than πEPO for δ close to 1. In sum, πEPO is a linearly increasing

function of δ which is equal to zero when δ = 0 and is higher than πEAFP when δ = 1

whereas πEAFP is strictly positive and constant in δ. The result follows immediately.

Example. If, for example, we assume that both F and G are uniform distributions, then

G(x) = x2

2
, ψ(θ, 1) = 2θ − 1, θ∗ = 1

2
, and EG[ω] = 1

2
, so that pEAFP = 3

4
and πEAFP = 1

16
.

For EPO mechanism, the price p∗1(ω) =
1+ω
2

and πEPO = δ
12
, implying that δ∗ = 3

4
.
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4 Results

4.1 Ex-ante Optimal Mechanisms

The EAFP and EPO are intuitive mechanisms in our setting where the seller’s cost is

only revealed after the first transaction opportunity presents itself. Both mechanisms only

depend on the buyer’s private information on which we impose incentive compatibility

constraints, conditioning the mechanisms themselves either on the expected value of the

cost (EAFP) or on the realized value of the cost (EPO). Both of these have drawbacks,

however, as conditioning on the actual cost improves on conditioning only on the expected

cost, but requires a delay.

A different option, which we turn to now, is to consider ex-ante mechanisms, but rather

than restricting these mechanisms to depend just on the buyer’s private information,

we allow them to depend on the future realization of the seller’s cost. This creates a

significant difference with ex-post mechanisms such as EPO mechanisms: in these latter

cases, the seller knows the cost realization when the mechanism is offered and can therefore

condition the mechanism itself on such realization, while with ex-ante mechanisms, the

seller cannot condition the mechanism on a realization she does not know and so she

will have to impose that any such mechanism makes it incentive compatible for her to

reveal her cost truthfully. Without loss of generality, we can therefore focus on direct

mechanisms (q0(θ, ω), t0(θ, ω)), where q0 is the probability of the product being delivered

and t0 is the transfer from the buyer to the seller. Therefore the problem now is

πEAO = max
q0,t0

∫ 1

0

∫ 1

0

[t0(θ, ω)− ωq0(θ, ω)]dG(ω)dF (θ), (EA)

subject to constraints: q0(θ, ω) ∈ [0, 1],

U0(θ, ω) := θq0(θ, ω)− t0(θ, ω) ≥ 0, ∀θ, ω, (IR)

U0(θ, ω) ≥ θq0(θ
′, ω)− t0(θ

′, ω) ≥ 0, ∀θ, θ′, ω, (ICB)

V0(θ, ω) := t0(θ, ω)− ωq0(θ, ω) ≥ t0(θ, ω
′)− ωq0(θ, ω

′), ∀θ, ω, ω′. (ICS)

We can replace (IR) and (ICB) constraints with monotonicity and buyer’s envelope con-

dition in the same way as above. Additionally, we can use the same approach to replace

the seller’s incentive compatibility constraints (ICS) by requiring that q0 must be non-

increasing in ω for all θ, and the corresponding envelope condition for the seller

t0(θ, ω) = ωq0(θ, ω) +

∫ 1

ω

q0(θ, y)dy.
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It is clear that the problem is linear in q0, as multiplying all q0’s by α > 0 multiplies

transfers by α and therefore also the profit by α.

The following lemma (proved in appendix A) shows that at least one of the maximizers

is an extreme point, and any extreme point has a property that it takes values {0, 1} almost

everywhere.

Lemma 1. There exists a maximizer q0(θ, ω) of the maximization problem (EA) such

that q0(θ, ω) ∈ {0, 1} almost everywhere.

Thus, we can focus on deterministic mechanisms. Proposition 3 below characterizes

the optimal ex-ante mechanism (EAO) where, again, the proof is relegated to appendix A.

Proposition 3. There exists a maximizer of the ex-ante optimization problem (EA) such

that q0(θ, ω) = 1[θ ≥ p ≥ ω] for some p ∈ [0, 1]. In particular,

πEAO = max
p∈[0,1]

{(1− F (p))G(p) (p− EG[ω|ω < p])} = max
p∈[0,1]

(1− F (p))G(p).

The EAO mechanism is a fixed price mechanism with price p, where trade occurs if

and only if the buyer’s valuation is above price p and the seller’s valuation is below price

p. A natural implementation is the following. The seller offers a price p to the buyer.

If the buyer rejects, no trade takes place, but if he accepts, then there is also an at-will

clause that allows the seller to cancel the order (returning the price) once the cost is

realized at time 1. Of course, the seller will do this if and only if this cost realization

turns out to be higher than p. In an EAFP mechanism, instead, the seller operates in a

specific performance regime, where she cannot renege on delivering even if the costs turn

out to be too high. πEAO represents the maximal profits the seller can obtain by offering

a mechanism at time 0, so that the EAFP mechanism cannot do better. In fact, a strict

comparison holds:

Corollary 2.

πEAO > πEAFP .

Proof. We can write the profits for the seller in an EAFP mechanism with a generic price

p as

ΠEAFP (p) = [1− F (p)] (p− EG[ω]) = [1− F (p)] (p− 1 + G(1)) .

Consider the difference between the expected profits for the seller in an EAO mechanism
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with generic price p < 1 and ΠEAFP (p):

ΠEAO(p)− ΠEAFP (p) = [1− F (p)] (1 + G(p)− p− G(1))

= [1− F (p)]

∫ 1

p

(1−G(x))dx > 0. (1)

So, for any price p that maximizes the seller’s profits in an EAFP mechanism, the corre-

sponding profit using the same price p in an EAO mechanism is strictly higher. And, of

course, a profit from the EAO mechanism with an arbitrary price p is weakly lower than

the profit from the optimal EAO mechanism. This establishes the result.

The comparison in (1) allows us also to compare any optimal price pEAO in the EAO

mechanism with the optimal price pEAFP in the EAFP mechanism:

Corollary 3.

pEAO < pEAFP .

Proof. Differentiating the expression in (1) with respect to price p shows that the differ-

ence between profits from the two mechanisms at a common price p is decreasing:

−f(p)
∫ 1

p

[1−G(ω)]dω − [1− F (p)][1−G(p)] < 0.

Therefore at the optimal price pEAFP from the EAFP mechanism, the profit for the EAO

mechanism is strictly decreasing, which implies that the optimal price for it is strictly

lower than pEAFP .

The intuition is instructive. At p = 0, the seller gets zero profits (because she can

cancel the order) in the at-will mechanism, whereas she has to make a loss when she is

not allowed to cancel. At the other extreme, p = 1, profits are zero for both mechanisms

because there will be no sale. Consider now a p ∈ (0, 1) and consider a marginal increase

in the price. There is no difference between the two mechanisms in terms of the reduced

probability of sale, but the distance between them on expected profits conditional on sale

decreases because there is a lower probability that canceling the sale will be necessary

in the at-will mechanism. Hence, there is a greater incentive to increase the price in the

EAFP mechanism than in the EAO mechanism.

We can now compare the optimal EAO mechanism with the optimal EPO mechanism,

and we have the following result, which we prove in appendix A:

Proposition 4. There exists a value δ ∈ (0, 1), with δ > δ∗, such that πEPO > πEAO for

all δ > δ and πEPO < πEAO for all δ < δ.
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This result has an important implication: if δ is sufficiently close to 1, the seller would

prefer to wait until the cost is realized. This is a consequence of her inability to embed the

cost realization in the ex-ante mechanism and the need to consider a mechanism where

she has to apply incentive compatibility constraints to her future self. We will return to

this in section 5.

Example. In the example where both F and G are uniform distributions, the optimal

EAO mechanism has pEAO = 2
3
< pEAFP = 3

4
, and πEAO = 2

27
> 1

16
= πEAFP . Recall that

πEPO = δ
12

so that δ = 8
9
> 3

4
= δ∗.

4.2 Dynamic Mechanisms

The EAO mechanism defines the highest profit the seller can achieve under full com-

mitment when contracting at time 0. One could consider dynamic mechanisms of the

type (q0, t0, q1, t1), but it is straightforward to see that such a mechanism cannot increase

profits compared to the EAO mechanism as the seller would still be facing the same set

of constraints. This observation is consistent with the observation that if agents’ private

information does not change over time, the optimal mechanism is a static one. Still,

proposition 4 suggests that, if the discount factor is sufficiently high, the seller can do

better by just waiting for the cost uncertainty to be realized and proposing a mechanism

at that point.

We now look at another possibility. We define a Dynamic Mechanism (D) as a mech-

anism where at time 0 the seller offers a price p0 to the buyer. If the buyer agrees to

purchase the good at this price, then the good is delivered by the seller at time 1, and

the game ends. If the buyer does not agree, upon observing her cost realization at time 1,

the seller has the opportunity to offer a second price p1 to the buyer. If this new price is

agreed upon, then the good is delivered by the seller at time 2. If the second offer is also

rejected, the game ends, and both sides get zero payoffs. The crucial distinction with the

possible dynamic contract we discussed above is that here the seller does not commit to

the time 1 price at the ex-ante stage. She will offer her time 0 price p0, update her beliefs

about the buyer’s valuation should the price offer be rejected, and then offer p1 at time

1, when ω is realized.

We consider Perfect Bayesian Equilibria of the game induced by the mechanism where

p0 is such that all buyer types above a threshold θ(p0) ∈ [0, 1] will accept the price while

all types below the threshold will reject it. If p0 is rejected, it is optimal for the seller

at time 1 to offer a fixed price dependent on her realization of ω, just as in the EPO

mechanism, but with beliefs F (θ|θ ≤ θ(p0)).

12



Let πD be the profits obtained by the seller if she optimizes the D mechanism described

above. In appendix A, we prove the following result:

Proposition 5.

πD > πEPO.

It is easy to see that the optimal EPO mechanism is a special case of the D mechanism

where the first-period price is so high that all buyer types reject it. The importance of the

above result lies in the fact that the inequality is strict: it is never optimal for the seller to

wait until time 1 to offer a mechanism to the seller. This result is surprising because the

seller does not commit to p1 at time 0 and therefore the usual Coasian dynamics imply

that p0 be set in such a way that types θ ≥ θ are not tempted to wait to purchase at time

1. Putting together corollary 2, proposition 4, proposition 5 and comparing the optimal

EAO and D mechanisms, in appendix A we prove our main result:

Theorem 1. Amongst all the mechanism considered (EAFP,EPO,EAO,D), there exists

a value δ∗∗ < δ such that at δ = δ∗∗ we have πD = πEAO whereas

1. πD is the highest profit achievable by the seller for all δ > δ∗∗,

2. πEAO is the highest profit achievable by the seller for all δ < δ∗∗.

Thus, the EAFP and EPO mechanisms are never optimal. We will discuss some of

the implications of this result in the next section.

Example. Going back to our example where both F and G are uniform distributions,

we obtain:

θ
∗
=

4 + δ −
√

(4− δ)2 − 8δ

4δ
.

This leads to time 0 price p∗0 < θ
∗
because only sufficiently high types will be willing to

accept this price and forgo the opportunity to get an even lower price with delay. As

expected, we have p∗1(ω) =
θ
∗
+ω
2

for ω ∈ [0, θ
∗
]. Time 0 prices are depicted in figure 1a,

as a function of δ, where the dashed red line shows θ
∗
, the solid red line p∗0. For ease of

comparison, we also show pEAO and pEAFP .

Figure 1a also confirms that the optimal price in the EAO mechanism is lower than

the corresponding price in the EAFP mechanism and this, in turn, is lower than θ
∗
. This

is the relevant comparison because, as discussed above, in the D mechanism, there will be

a gap between the time 0 price and the lowest buyer type willing to accept this price. The

fact that θ
∗
is higher than the other prices, therefore, confirms that in the D mechanism

13



the seller is only willing to commit to deliver the good when facing very high types. This

is a general property which we prove in appendix A:9

Proposition 6. Let θ
∗
(δ) be a maximizer of the D mechanism. Then, it is strictly in-

creasing in δ, and, for δ > 0,

θ
∗
(δ) > pEAFP .

Finally, figure 1a shows that p∗0, the optimal time 0 price in the D mechanism, is not

monotone in δ. The intuition lies in the fact that when δ is relatively low, the seller

values a sale at time 0 significantly more than a sale at time 1, so following a marginal

increase in δ, she is willing to lower p∗0 to keep the fraction of buyers who accept the time

0 offer (who have an increasing incentive to wait for the time 1 offer, the Coasian effect)

relatively high. When δ is relatively high, then the Coasian effect still applies, but the

seller no longer has much of an incentive to counteract it because she values contracting

at time 1 much more herself and so p∗0 increases.

In figure 1b we show the ex-ante expected profits from the optimized versions of all

the mechanisms described here, again as a function of δ. As is easy to see, the figure

confirms our results, with δ∗∗ = 260−8
√
10

279
≈ 0.84 < δ = 8

9
≈ 0.89.10.

Prices

δ

2
3

3
4

(a) Time 0 optimal prices in the
various mechanisms

Profit

δ

1
16

2
27

1
12

δδ∗∗δ∗

(b) Maximized profits in the various
mechanisms

Figure 1: Example with Uniform Distributions

The D mechanism dominates the EPO mechanism because it allows the seller to serve

very high types at time 0, types that she would very likely sell to even if she knew her

cost. But it still allows the seller the flexibility to serve the buyer once her cost is revealed

at time 1, just as the EPO mechanism does. The EAO mechanism allows the seller to

have an agreed deal at time 0 and its at-will feature still gives the seller the flexibility to

renege if the cost turns out to be too high. Compared to the D mechanism, it serves more

9Recall that we already proved that pEAFP > pEAO in corollary 3.
10In this example, πD is a strictly increasing function of δ. This is not a general property: as shown in

theorem 1, πD will eventually be strictly increasing, but it may be non-increasing for δ < δ∗∗.
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buyer types at time 0 and so is preferable when δ is small, but for a high discount factor

D dominates as the postponement of the contracting with low types allows the seller to

relax his own incentive constraints.

5 Discussion

We study a pricing problem of a novel good, where a seller faces demand before learning

the cost of production. In this setting, we ask whether a profit-maximizing seller should

offer a price to the buyer before (ex-ante) or after (ex-post) she learns her cost. It turns

out that the answer is: neither. Indeed, we show that the best ex-ante contract is not

just a simple take-it-or-leave-it price; it must also include an at-will clause that allows the

seller to renege on the agreement if the cost turns out to be too high. We assume that the

seller has full commitment power to a mechanism, which implies the optimal mechanism

is static: it is never optimal for the seller to commit to a mechanism where trade may be

agreed ex-post.

Still, in theorem 1 we consider that a dynamic mechanism, where at the ex-ante stage

the seller only commits to deliver the good at some price (i.e. without the at-will clause).

She does not commit to anything more, but if that offer is rejected, she offers a price ex-

post. We show that this will do better if the discount factor is sufficiently high. This may

be puzzling at first glance because it suggests that a mechanism available to a seller with

limited commitment power (in the sense of only being able to commit to spot contracts)

can do better than any full commitment mechanism. It also suggests that a dynamic

mechanism can be optimal in a static setting. The key to understanding this result is

that ex-post, the seller is an informed principal that can embed her private information

in the mechanism itself: the seller makes a take-or-leave-it offer of a price that depends

on her cost realization. Thus, there is no need for incentive compatibility constraints for

the seller. Ex-ante, on the other hand, the seller does not know her cost realization and

therefore cannot embed it in the mechanism; she can make the mechanism depend on her

cost realization, but she has to impose incentive compatibility constraints on her ex-post

self because this cost will be her private information. Thus, in our setting, where the

principal has private information and is seeking to maximize her payoff, the ability to

fully commit ex-ante is different from (and not as good as) the ability to fully commit ex-

post. Indeed, if the mechanism designer was a hypothetical external agent who wanted

to maximize the seller’s profits but did not know the seller’s cost ex-ante or ex-post,

she would not be able to do better than the optimal ex-ante mechanism because then

incentive compatibility on the seller would have to be imposed at both the ex-ante and

ex-post stage. The same would apply if we were interested in efficient, instead of seller-
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optimal, mechanisms. This explains why for a high enough discount factor, the seller

may opt to wait to contract ex-post rather than ex-ante—after all, the optimal ex-post

mechanism is, from an ex-ante perspective, a limited commitment contract—the seller

makes no offer (or offers something that no buyer type will accept) and waits to learn her

cost realization before making a second offer. 11

Theorem 1 suggests that the seller should employ two strategies for dealing with the

fact that ex-ante, she does not know the cost. One such strategy is offering a price that

only high types will accept, leaving the option of serving lower types when the cost is

realized. An alternative strategy is to commit to a price ex-ante but to include an at-will

clause that allows the seller to renege the offer when the cost is too high. Can the seller

do better than this? She clearly cannot do better with a mechanism at the ex-ante stage

or one at the ex-post stage because we characterized the optimal ones in each case. But

is there a dynamic mechanism that improves upon the mechanism D we described here?

Since in these dynamic mechanisms the seller does not commit ex-ante to the ex-post

price, we cannot rely on the revelation principle to give us an answer, and a fully general

question is an open question in the literature.12 However, one could conjecture that a

dynamic mechanism that combines the features of the two strategies mentioned above

could still improve on the Theorem 1 result. In such a mechanism, the seller does not

commit to what she will do at the ex-post stage, but at the ex-ante stage, she offers a

price with an at-will clause instead of one where delivery is guaranteed. After all, the D

mechanism is a combination of EAFP and EPO mechanisms, and given that the EAO

mechanism dominates the former, it is natural to ask whether a similar combination of

EAO and EPO mechanisms can do better. We do not provide a general answer to this

question, but in appendix C we analyze numerically two versions of this mechanism for

the case where both F and G are uniform distributions. The analysis shows that such

adjusted mechanisms are never optimal in this setting: for low values of δ, they improve

on the D mechanism but not on the EAO mechanism, whereas for the remaining values

of δ, they improve on the EAO mechanism, but are dominated by the D mechanism.

This suggests that the two strategies available to the principal to deal with the issue of

delayed information, an at-will clause or a two-price mechanism with no commitment on

11Our results would also hold in a procurement setting where a utility-maximizing buyer who does not
know ex-ante her valuation but only learns it ex-post faces a privately informed seller as in the weapon
systems example in the introduction. In appendix B we show this for the case of uniform F and G.

12Doval and Skreta (2022) suggest, for example, that some rationing may improve the seller’s outcomes.
But these results obtain under assumptions that are, on certain dimensions, more tractable (e.g., typically,
it is assumed that the buyer has two possible types or that the seller has no costs). More importantly,
it is still not obvious what the space of available mechanisms should be. For example, depending on the
assumptions made regarding this, the Coase conjecture may (Doval and Skreta, 2019) or may not hold
(Brzustowski, Georgiadis and Szentes, 2021; Lomys and Yamashita, 2022).
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the ex-post price should be considered as substitutes, not complements.

Another issue that is worth discussing is our assumption that ω is realized at time 1

regardless of whether there was an agreed contract at time 0. Our analysis does not focus

on the hold-up issues which arise when investment decisions are made before investors

(in our case, the seller) know the possible payoffs, and so our setting abstracts from this.

Still, it is worth asking what would happen if the seller could privately learn ex-post her

(marginal cost) of production only if she decides to invest in learning it. We can show

that if the seller faces multiple buyers, each with unit demand, and if the marginal costs

are only learned if a certain number of buyers commit to buying at time 0, then it is still

the case that the D mechanism dominates the EAO mechanism, as long as the discount

factor is sufficiently high and there is a sufficiently large number of buyers. Intuitively,

the requirement that a sufficient number of sales be obtained reduces the attractiveness

of the D mechanism for a fixed number of buyers because it requires the time 0 price to

be quite high so that the seller faces a new risk of not being able to reach such threshold.

Still, if the number of potential buyers is large enough, then this threshold will be reached

almost surely. Thus, our results are robust to settings where ex-ante investments may be

needed to learn the costs.13

Finally, our model can be adapted to one where the good’s quality is a variable of

interest. Suppose that the product has quality s > 0 and marginal cost c, potentially

both unknown and learned over time. Then the buyer’s payoffs would be θsx− p, where

x is the quantity and p the payment. And seller’s profit is p− cx. Let us define quality-

adjusted cost ω = c/s and quality-adjusted transfers t = p/s. With this relabeling, we

can apply our original model in terms of payoffs. In this extended model, our results still

apply if either s is commonly known (or contractible) or the private information is about

quality-adjusted values θ and ω.

13The idea that a sufficiently high number of purchases are needed to obtain a realization of ω can
be seen as a reduced-form of a model where there needs to be an investment cost for ω to be realized.
Cornelli (1996) considers a setting with multiple buyers where the seller faces a fixed cost of production.
Cornelli shows that the optimal mechanism for the seller assigns an object to each buyer who has a
positive virtual valuation, but only if the sum of the virtual valuations is sufficient to cover the fixed
cost. In other words, the optimal mechanism in the presence of a fixed cost implies the same prices as
in the optimal mechanism without a fixed cost but requires that enough buyers are willing to purchase
at that price regardless of cost. It is easy to see, then, that if such a fixed cost is publicly known or only
privately known to the seller (ex-ante or ex-post), it does not matter. The issue of the costs being private
information and being realized ex-post instead of ex-ante that we highlight here only matters when these
costs affect prices. Hence, for our purposes, whether the investment cost is public or private does not
matter, under the natural assumption that it is a fixed cost. So, we can think of a setting, as we do in
this discussion, where the fixed cost is set at zero for simplicity, but we do need a sufficiently high number
of orders for the seller to learn her cost.
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A Proofs

A.1 Proof of Proposition 2

Proof. One way to interpret the Yilankaya (1999) result is that when the seller privately

knows ω, she can do no better than when ω is publicly known. So, it is without loss of

generality to restrict the set of direct mechanisms (q1(θ, ω), t1(θ, ω)) to those of the form

(q1(θ|ω), t1(θ|ω)), where the mechanism embeds the realized cost ω and where there is
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no need for incentive compatibility constraints on the seller. The rest of the argument is

standard, but it allows us to calculate the seller’s profits.

The seller’s problem is

πEPO = δmax
q1,t1

∫ 1

0

∫ 1

0

(t1(θ|ω)− ωq1(θ|ω)) dG(ω)dF (θ),

subject to constraints: q1(θ|ω) ∈ [0, 1],

U1(θ|ω) := θq1(θ|ω)− t1(θ|ω) ≥ 0, ∀θ, ω, (IR)

U1(θ|ω) ≥ θq1(θ
′|ω)− t1(θ

′|ω) ≥ 0, ∀θ, θ′, ω. (ICB)

Using the standard steps, we can replace buyer’s incentive compatibility constraint (ICB)

and individual rationality constraint (IR) with (1) U(0|ω) = 0, (2) monotonicity of q1(θ|ω)
(i.e., q1 is a weakly increasing function of θ for all ω), and (3) the envelope condition

t1(θ|ω) = θq1(θ|ω)−
∫ θ

0

q1(x|ω)dx.

Using the envelope condition to substitute t1 out from the optimization problem, we can

rewrite the problem as

πEPO = δmax
q1

∫ 1

0

∫ 1

0

(ψ(θ, 1)− ω) q1(θ|ω)dG(ω)dF (θ).

The optimum is q1(θ|ω) = 1[ψ(θ, 1) ≥ ω]. This implies that buyers with low types such

that ψ(θ, 1) < 0 never get the product. This condition is equivalent to θ < θ∗, where θ∗

solves ψ(θ, 1) = 0. For the remaining types θ ≥ θ∗, we have q1(θ|ω) = 1[θ ≥ p∗(ω)] where

p∗(ω) solves ψ(p, 1) = ω. We can rewrite the maximum payoff for the seller as follows:

πEPO = δ

∫ 1

θ∗

∫ ψ(θ,1)

0

(ψ(θ, 1)− ω) dG(ω)dF (θ)

= δ

∫ 1

θ∗
ψ(θ, 1)

∫ ψ(θ,1)

0

dG(ω)dF (θ)− δ

∫ 1

θ∗

∫ ψ(θ,1)

0

ωdG(ω)dF (θ)

= δ

∫ 1

θ∗
(ψ(θ, 1)− EG[ω|ω < ψ(θ, 1)])G(ψ(θ, 1))dF (θ)

= δ

∫ 1

θ∗

(
ψ(θ, 1)−

(
ψ(θ, 1)− G(ψ(θ, 1)

G(ψ(θ, 1)

))
G(ψ(θ, 1))f(θ)dθ

= δ

∫ 1

θ∗
G(ψ(θ, 1))dF (θ)
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as specified in the proposition.

A.2 Proof of Lemma 1

Proof. Let H be the set of all bounded functions h : [0, 1]2 → [0, 1]. We endow H with

the standard linear structure so that it is a vector space. Moreover, we endow H with

the norm |h| =
∫ 1

0

∫ 1

0
|h(x, y)|dxdy. Let M ⊂ H the set of functions such that h ∈ M

satisfies (1) h(x, y) ∈ [0, 1] for all x, y, (2) h is weakly increasing in x for all y, and (3) h

is weakly decreasing in y for all x.

We claim thatM is convex and compact. To prove convexity, let us take any h, k ∈ M
and λ ∈ [0, 1]. Then αh + (1 − α)k is clearly also monotone (in the relevant directions)

and in [0, 1]. Therefore in αh + (1 − α) ∈ M. The compactness of M follows from a

straightforward two-dimensional generalization of Helly’s selection theorem.14

For notational convenience, we drop the subscript from q0. We apply the Extreme

Point theorem: M is a compact, convex subset of a normed vector space H, and the

objective is a continuous linear function of q. Therefore there exist some extreme points,

and in particular, there exists an extreme point q∗ that is a maximizer of the objective.

We next claim that q is an extreme point of M if and only if q(θ, ω) ∈ {0, 1} for almost

all θ, ω. For necessity, take q ∈ M such that q(θ, ω) ∈ {0, 1} for almost all values. Take

any q̂ ∈ M such that q̂ ̸= 0, i.e., there exists a positive measure of (θ, ω) such q̂(θ, ω) ̸= 0.

Then for all such values, (θ, ω), one of four cases holds:

1. q(θ, ω) = 0, q̂(θ, ω) > 0, then q(θ, ω)− q̂(θ, ω) < 0, so q − q̂ /∈ M.

2. q(θ, ω) = 0, q̂(θ, ω) < 0, then q(θ, ω) + q̂(θ, ω) < 0, so q + q̂ /∈ M.

3. q(θ, ω) = 1, q̂(θ, ω) > 0, then q(θ, ω) + q̂(θ, ω) > 1, so q + q̂ /∈ M.

4. q(θ, ω) = 1, q̂(θ, ω) < 0, then q(θ, ω)− q̂(θ, ω) > 1, so q − q̂ /∈ M.

Therefore q is an extreme point of M, which proves the necessity. For sufficiency, take

an extreme point q ∈ M and suppose by contradiction that there exist a positive mass of

pairs (θ, ω) such that q(θ, ω) ∈ (0, 1). Define a new function

q̂(θ, ω) =

q(θ, ω) if q(θ, ω) ≤ 0.5,

1− q(θ, ω) if q(θ, ω) ≥ 0.5.

14The proof is available upon request.
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This function q̂ is a bounded function from [0, 1]2 to R (it is not monotone, so not in M,

but this does not matter). Also, q̂ ̸= 0. Now,

q(θ, ω) + q̂(θ, ω) =

2q(θ, ω) if q(θ, ω) ≤ 0.5,

1 if q(θ, ω) ≥ 0.5,

so, q + q̂ is a function that only takes values in [0, 1], and it is weakly increasing in θ for

any given ω and weakly decreasing in ω for any given θ.15 Therefore q+ q̂ ∈ M. Similarly,

q(θ, ω)− q̂(θ, ω) =

0 if q(θ, ω) ≤ 0.5,

2q(θ, ω)− 1 if q(θ, ω) ≥ 0.5,

which is in [0, 1] and weakly increasing in θ and weakly decreasing in ω, so q − q̂ ∈ M as

well. Therefore q is not an extreme point of M, which is a contradiction.

A.3 Proof of Proposition 3

Proof. We continue to drop the subscript from q0. Lemma 1 implies that we only need

to consider q(θ, ω) ∈ {0, 1} a.e. It is useful to combine (ICB) and (ICS) constraints into

one as follows:

(θ − ω)q(θ, ω) =

∫ θ

0

q(x, ω)dx+

∫ 1

ω

q(θ, y)dy.

First, note that the right-hand side of the expression is always non-negative, so q(θ, ω) = 0

for all θ < ω. Therefore we can rewrite the expression as

(θ − ω)q(θ, ω) =

∫ θ

ω

q(x, ω)dx+

∫ θ

ω

q(θ, y)dy.

Observe that monotonicity plus the previous lemma jointly imply that there exist

weakly increasing function p1(ω) ∈ [ω, 1] and a weakly decreasing function p2(θ) ∈ [0, θ]

15Fix θ′ > θ, ω′ > ω, then

(q + q̂)(θ′, ω)− (q + q̂)(θ, ω) =


2q(θ′, ω)− 2q(θ, ω) ≥ 0 if q(θ, ω) ≤ q(θ′, ω) ≤ 0.5,

1− 2q(θ, ω) ≥ 0 if q(θ, ω) ≤ 0.5 ≤ q(θ′, ω),

1− 1 = 0 if 0.5 ≤ q(θ, ω) ≤ q(θ′, ω),

(q + q̂)(θ, ω′)− (q + q̂)(θ, ω) =


2q(θ, ω′)− 2q(θ, ω) ≤ 0 if q(θ, ω′) ≤ q(θ, ω) ≤ 0.5,

2q(θ, ω′)− 1 ≤ 0 if q(θ, ω′) ≤ 0.5 ≤ q(θ, ω),

1− 1 = 0 0.5 ≤ if q(θ, ω′) ≤ q(θ, ω).
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such that (except possibly for a zero-measure set):

q(θ, ω) =


0 if θ < p1(ω)

∈ [0, 1] if θ = p1(ω)

1 if θ > p1(ω)

=


0 if ω > p2(θ),

∈ [0, 1] if ω = p2(θ),

1 if ω > p2(θ).

Fix ω∗ ∈ (0, 1) such that p∗ := p1(ω
∗) < 1 (such value exists, otherwise profit is 0). Take

any θ > p∗. Then monotonicity implies

θ − ω∗ =

∫ p1(ω∗)

ω∗
0dx+

∫ θ

p1(ω∗)

1dx+

∫ p2(θ)

ω∗
1dy +

∫ θ

p2(θ)

0dy = θ − p∗ + p2(θ)− ω∗.

Therefore p2(θ) = p∗. Now, take (θ, ω) such that θ > p∗ > ω. Then monotonicity implies

that q(θ, ω) = 1 and therefore

θ − ω = θ − p1(ω) + p∗ − ω.

So that p1(ω) = p∗. This proves the claim.

A.4 Proof of Proposition 4

Proof. We showed that πEAO represents the maximized profits from an at-will posted

price mechanism. Let ΠEAO(x) denote profit from the same class of mechanisms but with

generic variable x, so that πEAO = maxxΠ
EAO(x). We can write

ΠEAO(x) = (x− EG[ω|ω < x])G(x)(1− F (x)) =

(
x−

xG(x)−
∫ x
0
G(y)dy

G(x)

)
G(x)(1− F (x))

= (1− F (x))G(x) = −
∫ 1

x

[−f(θ)G(θ) + (1− F (θ))G(θ)] dθ

=

∫ 1

x

[
G(θ)− 1− F (θ)

f(θ)
G(θ)

]
f(θ)dθ =

∫ 1

x

[G(θ)− (θ − ψ(θ, 1))G(θ)] f(θ)dθ.

Now, let ΠFP (x) represent the continuation (i.e. not discounted) profits for the seller in

the fixed price mechanism where she knows ω for a generic x (so that πEPO = δΠFP (θ∗)).

As shown in the proof of proposition 2, we can express

ΠFP (x) =

∫ 1

x

G(ψ(θ, 1))f(θ)dθ.
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and can now write

ΠFP (x)− ΠEAO(x) =

∫ 1

x

[G(ψ(θ, 1))− G(θ) + [θ − ψ(θ, 1)]G(θ)] f(θ)dθ

=

∫ 1

x

∫ θ

ψ(θ,1)

[G(θ)−G(y)]dyf(θ)dθ > 0,

because ψ(θ, 1) < θ for all θ < 1, and for all y < θ, we have G(θ) > G(y) (as g is a.e.

positive, G is strictly increasing in [0, 1]).

Therefore, we get

ΠFP (θ∗) ≥ ΠFP (pEAO) > ΠEAO(pEAO) = πEAO,

where pEAO is a maximizer of ΠEAO(x). Note that both ΠFP (θ∗) and πEAO are indepen-

dent of δ. Define δ = πEAO

ΠFP (θ∗)
, so that δ ∈ (0, 1). Now

πEPO = δΠFP (θ∗) > πEAO ⇐⇒ δ > δ.

Finally, since πEAO > πEAFP it must be that δ > δ∗.

A.5 Proof of Proposition 5

Proof. In this mechanism, if the buyer did not buy at time 0, the seller at time 1 faces

a buyer θ ∈ [0, θ] with a cumulative distribution function F (θ|θ ≤ θ) = F (θ)

F (θ)
. Following

the usual steps we can write the seller’s expected profits at time 1, as a function of the

probability of trade, and given the buyer’s type is in [0, θ] as

ΠD1

(θ) =

∫ θ

0

∫ θ

0

[
q1(θ, ω)−

∫ θ

0

q1(y, ω)dy − ωq1(θ|ω)
]
f(θ)

F (θ)
dθdG(ω),

so that the expected profits for the seller at time 0 in the D mechanism, given θ, are

ΠD(θ, δ) = (1− F (θ))

∫ 1

0

(p0 − ω)dG(ω) + δF (θ)ΠD1

(θ),

where p0 solves, for a fixed θ, the equation

θ − p0 = δ

∫ θ

0

∫ θ

0

q1(y, ω)dydG(ω), (CO)

in which the right-hand side represents the expected utility for the type θ buyer at time 1 if

she rejects price p0. Equation (CO) captures the Coasian constraint that types θ ∈ [θ, 1]
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prefer to accept price p0 to the expected utility they could get if they waited for the

mechanism offered at time 1. Now, since at time 1, the seller learns ω, we can apply the

Yilankaya (1999) result, which tells us that

q1(θ, ω) = 1

[
ω < θ − F (θ)− F (θ)

f(θ

]
= 1

[
ω < ψ(θ, θ)

]
,

so that

p0 = θ − δ

∫ θ

0

∫ max(0,ψ(θ,θ))

0

dG(ω)dy = θ − δ

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))dθ,

where θ∗∗(θ) is the value of θ for which ψ(θ, θ) = 0. If ψ(θ, 1) is strictly increasing in θ

then so is ψ(θ, θ), which implies that θ∗∗(θ) is well-defined, and θ∗∗(1) = θ∗. Also,

ΠD1

(θ)F (θ) =

∫ θ

0

∫ θ

0

[
q1(θ, ω)−

∫ θ

0

q1(y, ω)dy − ωq1(θ|ω)
]
f(θ)dθdG(ω)

=

∫ θ

θ∗∗(θ)

(
θf(θ)− F (θ) + F (θ)

)
G(ψ(θ, θ))dθ

−
∫ θ

θ∗∗(θ)

f(θ)
[
ψ(θ, θ))G(ψ(θ, θ))− G(ψ(θ, θ))

]
dθ

=

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))f(θ)dθ,

Hence,

ΠD(θ, δ) = (1− F (θ))

[
θ − δ

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))dθ − EG[ω]

]
+ δ

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))f(θ)dθ,

Recalling that
∫ 1

0
ωdG(ω) = EG[ω] = 1− G(1), we now consider

∂ΠD(θ, δ)

∂θ
= −f(θ)

[
θ −

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))dθ − 1 + G(1)

]

− δ(1− F (θ))

d ∫ θθ∗∗(θ)G(ψ(θ, θ))
dθ


+ δf(θ))

[
G(ψ(θ, θ))−

∫ θ

θ∗∗(θ)

G(ψ(θ, θ))

]
dθ,
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and if we evaluate this at θ = 1 we get

∂ΠD(1, δ)

∂θ
= −f(1)

[
1−

∫ 1

θ∗
G(ψ(θ, 1)dθ − 1 + G(1)

]
+ δf(1)

[
G(1)−

∫ 1

θ∗
G(ψ(θ, 1)

]
dθ

= f(1)

[
δ

∫ 1

θ∗
G(ψ(θ, 1)dθ − G(1) + δG(1)− δ

∫ 1

θ∗
G(ψ(θ, 1)dθ

]
= f(1)G(1)(δ − 1),

because, clearly,
d
∫ θ
θ∗∗(θ)G(ψ(θ,θ))

dθ
< ∞ for any θ. So, for any δ < 1, ΠD(θ, δ) is decreasing

at θ = 1 and this implies that it is optimized for θ < 1. Since ΠD(1, δ) = πEPO then this

proves the result.

A.6 Proof of Theorem 1

Proof. We begin by comparing the optimal D with the optimal EAO mechanism. From

the proof of proposition 5 it is easy to see that πD is a continuous function of δ. There,

we also show that for δ < 1 we have πD > πEPO while if δ = 1, then πD = πEPO. These

imply that πD > πEAO for a non-empty set of values of δ. By continuity, there exists a

δ∗∗ which is the smallest value of δ such that πD(δ) = πEAO. Now, let

ΠD(x, δ) = (1− F (x))

[
x− δ

∫ x

θ∗∗(x)

G(ψ(θ, x)dθ − EG[ω]
]
+ δ

∫ x

θ∗∗(x)

G(ψ(θ, x))f(θ)dθ,

= (1− F (x)) [x− EG[ω]]︸ ︷︷ ︸
=ΠEAFP (x)

+δ

[∫ x

θ∗∗(x)

G(ψ(θ, x))f(θ)dθ −
∫ x

θ∗∗(x)

G(ψ(θ, x)dθ

]
︸ ︷︷ ︸

=:Φ(x)

= ΠEAFP (x) + δΦ(x),

and as we can define πD(δ) = ΠD(x∗(δ), δ) = ΠEAFP (x∗(δ)) + δΦ(x∗(δ)), where x∗(δ) is a

maximizer of ΠD(x, δ), then by the envelope theorem,

dπD(δ)

dδ
= Φ(x∗(δ)).

Defining πEAFP = ΠEAFP (xo), where xo is the maximizer of ΠEAFP (x), we therefore have

that

πEAO = πD(δ∗∗) = ΠEAFP (x∗(δ∗∗)) + δ∗∗Φ(x∗(δ∗∗)) > ΠEAFP (xo) = πEAFP .
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By definition, ΠEAFP (xo) ≥ ΠEAFP (x∗(δ∗∗)) which implies that Φ(x∗(δ∗∗)) > 0. Now,

suppose δ > δ∗∗.

πD(δ) = ΠEAFP (x∗(δ)) + δΦ(x∗(δ) ≥ ΠEAFP (x∗(δ∗∗)) + δΦ(x∗(δ∗∗)) > πD(δ∗∗) > πEAFP ,

which means that Φ(x∗(δ)) > 0. Hence, once πD(δ) reaches πEAO at δ∗∗, then it must be

strictly increasing and πD(δ) > πEAO for all δ > δ∗∗. Thus, δ∗∗ is unique.

Conversely, πD(0) = πEAFP < πEAO which means that there is a non-empty set

of values of δ for which πD(δ) < πEAO. By the construction above, this set must be

the set [0, δ∗∗). That δ∗∗ < δ follows from proposition 5. Finally, corollary 2 implies

that the optimal EAFP is always dominated by the optimal EAO mechanism, whereas

proposition 5 implies that the optimal D mechanism always dominates the optimal EPO

mechanism.

A.7 Proof of Proposition 6

Proof. From the proof of theorem 1 consider the function Φ(x). Define

ϕ(x) :=
dΦ(x)

dx
= f(x)

[
G(x)− (x− ψ(x, 1))G(x) +

∫ x

θ∗∗(x)

(ψ(θ, x)− ψ(θ, 1))g(ψ(θ, x)dθ

]
.

Note that ϕ(x) is a continuous function. Remember that xo, the maximizer of ΠEAFP (x),

satisfies ψ(xo, 1) = EG[ω], so

ϕ(xo)

f(xo)
= G(xo)− (xo − EG[ω])G(xo) +

∫ xo

θ∗∗(xo)

(ψ(θ, xo)− ψ(θ, 1))g(ψ(θ, xo)dθ

= G(xo) (EG[ω]− EG(ω|ω < xo))︸ ︷︷ ︸
>0

+

∫ xo

θ∗∗(xo)

(ψ(θ, xo)− ψ(θ, 1))︸ ︷︷ ︸
>0

g(ψ(θ, xo)dθ > 0.

We know by proposition 5 that x∗(δ) must be an interior solution, and from proposition 1

that xo must also be an interior solution. Thus, by the argument above, for any x∗(δ)

that maximizes ΠD(x, δ) and for xo we must have

∂ΠD(x∗(δ), δ))

∂x
=
dΠEAFP (x∗(δ))

dx
+ δϕ(x∗(δ)) = 0,

∂ΠD(xo, δ)

∂x
=
dΠEAFP (xo)

dx
+ δϕ(xo) = δϕ(xo) > 0,

while simple inspection shows that dΠEAFP (x)
dx

is positive for x < xo and negative for x > xo

so that xo is unique. Also, ϕ(xo) > 0 implies x∗(δ) ̸= xo. So, suppose, contrary to the
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statement, that for some fixed δ, there is at least one maximizer x∗(δ) that is smaller

than xo. Then, given the conditions above, it must be that dΠEAFP (x∗(δ))
dx

> 0 which

implies ϕ(x∗(δ)) < 0. Consider now the highest such x∗(δ) < xo and any x ∈ (x∗(δ), xo).

For such x it must be that

dΠD(x, δ)

dx
=
dΠEAFP (x)

dx
+ δϕ(x) < 0,

dΠEAFP (x)

dx
> 0.

The first inequality applies because continuity of ΠD(x, δ) would otherwise imply that

x∗(δ) is not the largest maximizer smaller than xo. The second inequality applies because

x < xo. Together, these imply that, for any x ∈ (x∗(δ), xo), ϕ(x) < 0. But, together with

the continuity of ϕ, this contradicts that, as shown above, ϕ(xo) > 0. Then, there is no

largest maximizer that is smaller than xo, and so there is no maximizer that is smaller

than xo. Finally, to see that x∗(δ) is increasing in δ, notice first that if ϕ(xo) > 0, as

shown above, then ϕ(x) > 0 for all x > xo because the only component of ϕ(x) that may

be negative:

G(x)− (x− ψ(x, 1))G(x) = G(x)[ψ(x, 1)− EG(ω|ω < x)]

must in fact be positive for x > xo because ψ(xo, 1) = EG(ω), ψ(x, 1) is strictly increasing

and EG(ω|ω < x) ≤ EG(ω). From the implicit function theorem, we have that

dx∗(δ)

dδ
= − ϕ(x∗(δ))

∂2ΠD(x∗(δ),δ)
∂x2

,

but because x∗(δ) is an interior maximum, it must be that ∂2ΠD(x∗(δ),δ)
∂x2

< 0 while, as

argued above, ϕ(x∗(δ)) > 0 and this gives us the result.

B The Buyer as Principal

We consider the reverse case from that of the main text, where the mechanism designer is

the buyer. We assume here that the seller knows her cost realization ω at time 0, whereas

the buyer will only discover his value θ at time 1. The only modeling assumption that we

need to modify is that instead of asking that the virtual valuation be increasing, here we

need the virtual costs ξ(ω, 0) = ω + G(ω)
g(ω)

to be increasing. Still, we will not pursue the

general analysis here as it is entirely analogous to that in the main text and will therefore

just show how our results still hold via the example where both F and G are uniform
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distributions. We use the letter P to indicate the optimal price in these mechanisms

and uM to indicate the buyer’s (ex-ante expected) utility in mechanism M when this is

maximized.

EAFP mechanism. The buyer is maximizing

(EF [θ]− P )P ) =

(
1

2
− P

)
P,

so that PEAFP = 1
4
= 1− pEAFP ;uEAFP = 1

16
= πEAFP .

EPO mechanism. The buyer is maximizing, at time 1

(θ − P )P,

which is maximized by PEPO = θ
2
and gives

uEPO = δ

∫ 1

0

(
θ − θ

2

)
θ

2
dθ =

δ

12
= πEPO.

EAO mechanism. It is easy to see that the optimal mechanism being one where

q0(θ, ω) = 1[θ ≥ p ≥ ω] as in proposition 3 still applies here and so the buyer is maximizing

(EF (θ|θ > P )− P )P (1− P ) =
1

2
(1− P )2P,

so that

PEAO =
1

3
= 1− pEAO;uEAO =

2

27
= πEAO.

D mechanism. We proceed by noting that now we look at equilibria where the buyer

offers a price P0 such that a seller type ω will only be willing to accept it if and only

if ω ≤ ω, where ω ∈ [0, 1]. Hence, at time 1, the buyer will maximize the following

expression:

UD1

(P, θ, ω) =

∫ P

ω

θ − P

1− ω
dω,

which gives us

PD
1 =

ω + θ

2
;uD

1

(θ, ω) =
(θ − ω)2

4(1− ω)
.

Now, consider time 0. We must guarantee that the marginal seller is indifferent between

the profits on offer in the first period (PD
0 −ω) and the expected profits if she declines to
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sell. These are

δ

∫ 1

ω

(
ω + θ

2
− ω

)
dθ =

δ

4
(1− ω)2,

so that PD
0 = ω + δ

4
(1− ω)2. Putting it all together, we get

UD(ω, δ) =

∫ 1

0

ω

(
θ − ω − δ

4
(1− ω)2

)
dθ + (1− ω)δ

∫ 1

ω

uD
1

(θ, ω)dθ

= ω

(
1

2
− ω − δ

4
(1− ω)2

)
+
δ(1− ω)3

12
.

The expression above is maximized by

ω∗ =
3δ − 4 +

√
16− 16δ + δ2

4δ
= 1− θ

∗

and, finally, the maximized utility is uD = πD.

Conclusion. We found that πM = uM for all mechanisms M considered in the paper.

Note that the exact equality is a consequence of the assumption that F and G are both

identical symmetric distributions but that the ranking of the different mechanisms is the

same as for the case when the principal is the seller holds for any general distributions

that satisfy our assumptions. As should be expected, in terms of thresholds at which the

agent accepts the time 0 offer, we get the reverse ranking that we had for the case when

the principal was the seller:

PEAO > PEAFP > ω∗.

The intuition is simple. The buyer wants to minimize the prices she will pay for the good,

so the seller will get the best price in the EAO mechanism (but this will be an at-will offer,

so there will be a risk that the buyer will renege). With the EAFP mechanism, the seller

gets a lower price, but now the buyer is committed to buying at that price. Finally, in the

D mechanism, the buyer will commit to buying only from very low-cost buyers, leaving

the opportunity to buy from higher-cost sellers only when she knows her valuation.

C At-will Dynamic Mechanisms

In this appendix, we consider the example with uniform F and G distributions and discuss

whether adding an at-will element to the D mechanism might help the seller. The reason

we are asking this is natural: as we showed in theorem 1, for a low discount factor, the

seller prefers to use the EAO mechanism, which is an at-will posted price mechanism,
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whereas for a high discount factor D mechanism performs best. In the D mechanism, the

acceptance of the first-period offer ensures service with certainty; it is therefore natural

to ask whether replacing this with an at-will option could perform even better.

In particular, we assume that at time 0, the seller offers a price p0. If the buyer accepts

the offer, the seller still has a right to walk back from the offer (i.e., it is an at-will contract

with a price p0). If the buyer does not accept the offer at time 0, then the seller offers

a price p1(ω) at time 1, after learning the cost. As with the D mechanism, there is no

ex-ante commitment from the seller as to what happens at time 1. Naturally, buyers with

types above some threshold θ ∈ [0, 1] accept the offer, but now the seller completes the

transaction if and only if the cost is low enough.

The remaining question is what happens at time 1 if the buyer accepts the offer but the

seller reneges? We consider two possible alternatives. In mechanism D1, the interaction

ends after the seller walks back from the offer, i.e., if θ ≥ θ and ω > p0, there is no further

transaction. In mechanism D2, the seller can offer another price p1(ω) at time 1 after

such a scenario.

C.1 At-will Dynamic Mechanisms Without a Second Opportu-

nity (D1)

Consider time 1. If the buyer accepted the offer at time 0, then there is no more interaction

here. If the buyer rejected the offer, the seller expects the type to be θ < θ and therefore

offers a posted price p1(ω) = θ+ω
2
. This means that in this event, the seller’s expected

payoff is θ
2

12
and the expected payoff for a type θ buyer is 1

4
(2θ − θ)2.

Let us now go back to time 0. If the buyer accepts the price p0, the trade occurs with

probability Pr(ω < p0) = G(p0) = p0 and therefore the expected payoff for the buyer is

p0(θ− p0). The marginal type θ is indifferent between accepting and rejecting the offer if

p0(θ − p0) = δ
1

4
(2θ − θ)2 = δ

θ
2

4
.

This gives us p0 = θ
2

(√
1− δ + 1

)
∈ (0, 1). The expected profit for the seller from this

mechanism at a fixed θ is, therefore

ΠD1(θ) = Pr(θ ≥ θ)Pr(ω ≤ p0)(p0 − EG[ω|ω ≤ p0]) + Pr(θ < θ)δ
θ
2

12

= (1− θ)
p20
2

+ δ
θ
3

12
= (1− θ)

(
θ
2

(√
1− δ + 1

))2
2

+ δ
θ
3

12
.

32



Profit

δ

1
16

2
27

1
2

Figure 2: Profits from D1 and D2 mechanisms compared to other
mechanisms considered

Maximizing this expression with respect to θ gives the solution

θ
∗
= min

{
4
√
1− δ − 2δ + 4

6
√
1− δ − 5δ + 6

, 1

}
.

Notice that θ
∗
= 1 if and only if δ ≥ 8

9
= δ, which means that in this region πD1 =

πEPO < πD. Moreover, for all δ < δ, the following figure 2 shows that πD1 < πEAO. So,

D1 is not an improvement compared to the maximum of D and EAO mechanisms.

Let us first compare the D1 mechanism with the EAO mechanism. Both offer an

at-will contract at time 0, but if the buyer rejects the offer, D1 may make another offer

at time 1, whereas EAO does not. This additional offer comes with a cost and a benefit.

The benefit is generating some surplus and capturing some rents from a buyer whose

value is relatively low. However, the cost is that the potential of getting the second offer

creates information rents in the first period, pushing the price of the initial at-will contract

down. The calculations show that the cost always dominates the benefit, except in the

limit case where the seller prefers to give up the at-will contract completely and simply

offer an optimal time 1 contract (the EPO mechanism). Therefore D1 mechanisms are

always (weakly) dominated by either an EAO or an EPO mechanism (in contrast to D

mechanisms that always dominate EPO mechanisms and dominate EAO mechanisms for

large enough δ).

C.2 At-will Dynamic Mechanisms With a Second Opportunity

(D2)

In the second scenario, the D2 mechanism, the seller offers the same set of contracts,

except for the additional possibility of making another offer after a history where the

buyer accepted the offer, but the seller walked away. Again, this additional offer has the
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potential benefit of creating a surplus in situations where the buyer would not have been

served otherwise. That is, when the buyer’s type is high, and the seller’s cost is high, the

seller may want to “re-negotiate” with the buyer and offer the object one period later at

a different price instead of just canceling the first-period contract.

For fixed thresholds θ and ω (in D1, we had ω = p0), the continuation payoffs after

the buyer declines the offer is the same as with the D1 mechanism. If the buyer accepts

the offer, the seller learns that θ > θ and therefore, the posterior distribution is uniform

(θ, 1]. So, if the seller walks away from the time 0 offer and offers a new price p1(ω) ≥ θ,

the optimal price p1(ω) would solve the following problem

max
p≥θ

∫ 1

p

(p− ω)Pr(θ ≥ p|θ ≥ θ) = max
p≥θ

∫ 1

p

(p− ω)
1− p

1− θ
.

The maximizer is p1(ω) = max
{
θ, 1+ω

2

}
. Therefore the continuation profit to the seller is

(1−ω)2
4(1−θ) if ω > 2θ − 1,

θ − ω if ω ≤ 2θ − 1.

On the other hand, if the seller does not walk away and serves the buyer at a price

p0, the profit is p0 − ω. As the marginal type of seller, ω, must be indifferent between

reneging and delivering the product, we get a condition

p0 − ω =

δ
(1−ω)2
4(1−θ) if ω > 2θ − 1,

δ(θ − ω) if ω ≤ 2θ − 1.

From the buyer’s perspective, accepting the offer at time 0 at price p0 brings utility

θ − p0 if the seller does not renege (with probability Pr(ω < ω) = G(ω) = ω). If the

seller reneges, there is a chance to get a new offer and still get some surplus. However,

this payoff is zero for the marginal type (and close to zero for types close to the marginal

type), because for all realizations of θ ≤ 2θ − 1 the price offer is p1(ω) = θ, leaving no

surplus for θ, and for all θ > 2θ − 1, the price offer is p1(ω) = (1 + ω)/2 > θ. Therefore

the expected payoff from accepting the offer for the marginal type is ω(θ−p0). This gives
us a condition

ω(θ − p0) = δ
θ
2

4
.
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Combining the last two equations, we get

θ − δ
θ
2

4ω
= p0 =

ω + δ (1−ω)
2

4(1−θ) if ω > 2θ − 1,

ω + δ(θ − ω) if ω ≤ 2θ − 1.
(2)

If there is an interior solution to the seller’s problem, it must have (θ, ω) satisfying the

equation above. As this equation generally does not have a closed-form solution, we

proceed with the analysis numerically. That is, we compute all combinations of (θ, ω) for

each δ that satisfy the equality and then maximize the seller’s profit, which is

ΠD2(θ, ω) = Pr(θ < θ)δ
θ
2

12
+ Pr(θ ≥ θ)Pr(ω ≤ ω)(p0 − EG[ω|ω < ω])

+ Pr(θ ≥ θ)Pr(ω > ω)δ

(∫ max{ω,2θ−1}

ω

(θ − ω)dω +

∫ 1

max{ω,2θ−1}

(1− ω)2

4(1− θ)
dω

)

= δ
θ
3

12
+ (1− θ)ω

(
p0 −

ω

2

)

+ (1− θ)(1− ω)δ


(1−ω)3
12(1−θ) if ω ≥ 2θ − 1,

1
6

(
4θ

2 − 6θω − 2θ + 3ω2 + 1
)

if ω < 2θ − 1.

We find that when δ ≥ 1
2
, equation (2) has no solutions. This means that either ω = 0

or ω = 1. Note that in both cases, we reach the same conclusion. If ω = 1, then the seller

never reneges, i.e., does not renege even at cost ω = 1. This can happen only if p0 = 1,

which in turn means that the buyer never accepts the first-period offer. Therefore the

mechanism is equivalent to the EPO mechanism. On the other hand, if ω = 0, then the

seller always reneges, which means that the buyer would accept the offer only if p0 = 0.

Therefore the time 0 contract is a worthless agreement; at zero price, the seller offers

a contract that he never fulfills. Again, this implies that we have a mechanism that is

equivalent to the EPO mechanism.

On the other hand, if δ < 1
2
, equation (2) not only has a solution, but has a continuum

solution. We compute ΠD2(θ, ω) for all such combinations (θ, ω) and find a unique profit

maximizing combination, which we report on figure 2.

As figure 2 (the line for D2) illustrates, the profit from the D2 mechanism is strictly

lower than the EAO mechanism for all δ < 1
2
and then equal to the profit from the EPO

mechanism for all δ ≥ 1
2
. This means that it is again dominated by the combination of

EAO and EPO mechanisms.

Intuitively, the D2 mechanism can potentially be either better or worse than the D1

mechanism. It may be better because it initiates a contract in some situations where D1
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could not. However, it may also be worse, as the seller now has an additional incentive to

renege, because the value of the time 0 contract is reduced. The latter effect is relatively

small when δ is very low, as reneging would delay the delivery of the product, and with

low δ, this makes reneging unappealing. Therefore D2 is slightly better than D1 for

very low values of δ. Still, it is never dominating EAO for low values of δ for the same

reasons discussed above. As δ increases, the negative effect of the additional flexibility

increases, making D2 worse than D1. And as δ increases further, the effect is so large

that any time 0 contract would be reneged for sure. Thus, the mechanism converges to

the EPO mechanism. Once again, these results show that at-will dynamic contracts can

never improve on the optimal ex-ante or ex-post mechanisms, while the D contract which

has no at-will clause, will be better than both of those when δ is sufficiently high. This

suggests that while a dynamic contract (with limited commitment) and at-will clauses are

two ways for the seller to address the problem of receiving her private information with

delay, they should be seen as substitutes rather than complements. Depending on the

value of the discount factor one may be preferable to the other, but it is never optimal to

design a mechanism with both features.
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