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Abstract

I study price setting on a network of interconnected firms. Some or all these
firms may have market power. The key distortion reducing both total profits and
social welfare is multiple-marginalization, which is magnified by strategic interac-
tions. Individual profits are proportional to influentiality, a new measure of net-
work centrality defined by the equilibrium characterization. The results emphasize
the importance of the network structure when considering policy questions such as
mergers or trade policies.
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1 Introduction
Most products are produced and sold by supply chain networks consisting of intercon-
nected producers, intermediaries, and retailers. These firms maximize their profits, often
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wielding significant market power. For instance, in the book publishing industry, a pub-
lisher sources content, outsources printing, and employs distributors to reach retail chains.
Many of these players possess market power and earn positive profits. 1

This paper aims to answer the question: How do firms in a network set prices for
their products when they have market power? In my model, I assume that firms not
only control the pricing of their own products, but also influence the pricing decisions
of other firms within the network. However, characterizing the equilibrium presents two
challenges. Firstly, the demand function can be non-linear, making it difficult to solve
for best-response functions analytically many networks. Secondly, the decisions made by
firms within the network are interconnected. This means that the problem is dynamic,
but cannot be solved sequentially. To address these issues, I characterize best-responses
by their inverses and aggregate all necessary conditions into one necessary condition for
the equilibrium. I then demonstrate that this condition has a unique solution and that
the resulting behavior is indeed an equilibrium.

The main result of the paper is a characterization theorem. Under certain regularity
conditions, there exists a unique equilibrium. I provide equilibrium characterization and
show how to compute it.The equilibrium condition has a natural interpretation. It equal-
izes the difference between the equilibrium price of the final good and the total marginal
cost with a weighted sum of influences in all levels. At the most basic level, a firm’s profit
is directly affected by its own price increase. At the next level, a firm’s price increase can
alter the behavior of directly connected firms. Furthermore, each price change can have a
ripple effect, influencing firms that are indirectly connected. These influences are weighted
by endogenous factors determined by the demand function’s shape and the equilibrium
behavior.

How do social welfare and total profits depend on network structure? In this model
of interconnected firms with market power, the primary distortion that diminishes both
profits and welfare is multiple marginalization. The main insight from the analysis is that
network structure plays a pivotal role in determining the magnitude of the marginalization
issue. I show that strategic interactions within a network magnify the marginalization
problem. For instance, while a merger might seem to enhance efficiency based on conven-
tional wisdom, if it leads to increased control by the merged firms, it could potentially
negate the anticipated efficiency gains. Likewise, trade restrictions and tariffs, often
crafted to modify supply chains, should be assessed with an understanding of their effects
on the business network structure.

The rest of the paper is structured as follows. The next section discusses the related
literature. Section 3 introduces the model, illustrates it with some examples of networks,
and discusses the regularity assumptions. Section 4 provides the main characterization
result and describes the main components of the proof—in particular, how the charac-
terization overcomes two main complications that arise from non-linearities in demand
and interconnected decisions on the network. Section 5 interprets the characterization
by comparing it with some known benchmarks and then discusses the key distortion—
multiple-marginalization. Section 6 studies which firms are more influential and discusses

1In a typical $26 book, retailers take about 50%, 13% covers printing and transport, and authors
receive around 15%, indicating significant markups. Source: New York Times article "Math of Publishing
Meets the E-Book" by Motoko Rich (Feb. 28, 2010), https://www.nytimes.com/2010/03/01/business/
media/01ebooks.html.
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the relationship between the implied influentiality measure with standard network central-
ity measures. Section 7 describes how to apply the characterization result to compute the
equilibrium and provides further results for some of the most common demand functions
(including linear, power, and logit). Section 8 concludes and discusses policy implications
for mergers and trade. All proofs are in appendix A.

2 Related Literature
Industrial organization. The paper contributes to the literature on vertical integra-
tion. Spengler (1950) was the first to describe the double-marginalization problem and
after this the literature has extensively studied the benefits and costs of vertical control,
including Mathewson and Winter (1984), Grossman and Hart (1986), Rey and Tirole
(1986), Salinger (1988), Salinger (1989), Riordan (1998), Ordover et al. (1990), Farrell
and Shapiro (1990), Bolton and Whinston (1993), Kuhn and Vives (1999), Nocke and
White (2007), and Buehler and Gärtner (2013). Empirical work shows that production
has a network structure (Atalay et al., 2011), and mergers or removal of vertical re-
straints may sometimes hurt consumers (Gayle, 2013; Crawford et al., 2018; Luco and
Marshall, 2020). The theoretical literature analyzes many forms of competition and con-
tract structures, but very little is known about networks with firms with market power
at more than two levels (upstream-downstream).2 In this paper, I focus on a simple
contract structure (posted prices) and allow only relatively simple competition rules (ei-
ther price-takers or monopolists), but extend the analysis to general network structures.
I demonstrate that both direct and indirect strategic interactions on networks magnify
multiple-marginalization distortions.3

Network games. The paper contributes to the literature on network games, where
players take actions on a fixed network and the payoffs depend both on their own and
their neighbors’ actions. According to a survey by Jackson and Zenou (2015), most
works in this literature can be divided into two groups. First, a lot of progress has been
made in games with quadratic payoffs (or more generally, payoffs that imply linear best-
responses). A seminal paper is Ballester et al. (2006). It found that the equilibrium actions
are proportional to Bonacich centrality. Bramoullé and Kranton (2007), Calvó-Armengol
et al. (2009), Bramoullé et al. (2014), and Zhou and Chen (2015) study more general
variations of this game and find that Bonacich centrality still determines the equilibrium
behavior. Bloch and Quérou (2013) and Fainmesser and Galeotti (2016) study pricing
of goods with network externalities with quadratic payoffs and find that optimal pricing
leads to discounts that are proportional to Bonacich centrality. Bimpikis et al. (2019)
study Cournot competition on a bipartite network, where the sellers Cournot-compete in

2Nava (2015) is an exception that studies Cournot competition when trades are restricted by the
network structures and provides a characterization result. While the set-up is different from mine, it also
identifies marginalization as a major source of inefficiency. However, the inefficiency disappears with a
large number of firms, whereas my model does not have this feature.

3Supply chain management literature, originating with Forrester (1961), has similar effects like the
bullwhip effect (Lee et al., 2004; Bhattacharya and Bandyopadhyay, 2011; Liu et al., 2007; Perakis
and Roels, 2007), where chain interactions amplify distortions. Recent studies highlight chain fragility
(Acemoglu and Tahbaz-Salehi, 2020; Elliott et al., 2022).
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markets which they have access to. They show that when the demands are linear and
costs quadratic, the equilibrium behavior is proportional to Bonacich centrality.

The second branch of network games studies games with non-quadratic payoffs and is
generally able to analyze only qualitative properties of the equilibria rather than provide
a full characterization.4 A seminal paper is Galeotti et al. (2010). Compared to these
works, in this paper, I provide a characterization result for a game on a network with a
relatively general payoff structure. The characterization defines a natural new measure
of influentiality and the firms’ choices and payoffs are proportional to this measure. In
special cases when the best-response functions are linear (such as linear demand), this
measure is proportional to Bonacich centrality. But as the weights are endogenously
defined by the demand function and equilibrium behavior, for all other demand functions
the measure of influentiality differs from Bonacich centrality. Indeed, I provide examples
of special cases where it can be equivalent to degree centrality or even independent of the
network structure.56

Sequential and aggregative games. Methodologically, the paper builds on recent
advances in sequential and aggregative games. In a special case, when firms are making
independent decisions, the model is an aggregative game. Aggregative games were first
proposed by Selten (1970) and there has been recent progress in aggregative games lit-
erature by Jensen (2010); Martimort and Stole (2012); and Acemoglu and Jensen (2013)
that has been used to shed new light on questions in industrial organization by Nocke and
Schutz (2018).One classical aggregative game is a contest and this paper builds on recent
work on sequential contests by Hinnosaar (2023) extending the methodology to networks
and asymmetric costs.7

3 Model

3.1 Setup
The model is static and studies the supply of a single final good. The final good has a
demand function D(P ), where P is its price. The production and supply process requires

4An exception is Choi et al. (2017), which studies price competition on networks, where consumers
choose the cheapest paths from source to destination and intermediaries set prices, thus making the game
a generalization of Bertrand competition. In settings where the players interact on a network randomly,
the analysis is more tractable, for example Manea (2011), Manea (2018), and Condorelli et al. (2017)
who study bargaining on networks.

5There is an earlier literature on supply chain networks in economics, started by Hatfield and Milgrom
(2005); Ostrovsky (2008). This literature focuses on market design and matching, i.e., network formation,
whereas my paper belongs to network games literature analyzing behavior on a fixed network.

6Networks also play an important role in international trade and macroeconomics. Trade exhibits a
network structure (Chaney, 2014), with early works integrating vertical restraints and intermediaries’ roles
(Spencer and Jones, 1991; Antràs and Costinot, 2011). Recent literature focuses on network formation
in production (Oberfield, 2018; Liu, 2019).

7There are other papers belonging to the intersection of contests and networks literature, including
Franke and Öztürk (2015) and Matros and Rietzke (2018) who study contests on networks and Goyal
et al. (2019) who study contagion on networks.
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m + n inputs. I normalize the units of inputs so that one unit of each input is required
to produce one unit of output.

Input i is produced by firm i, that has a constant marginal cost ci and a price pi

for its product.The price pi is firm i’s per-unit revenue net of payments to other firms
in the model. Due to normalization, the quantity of firm i’s product (i.e., quantity
of input i) is equal to D(P ). Therefore firm i gets profit πi(p) = (pi − ci)D(P ), where
p = (p1, . . . , pm+n) and the price of the final good is the sum of all net prices, P = ∑m+n

i=1 pi.
I assume that m inputs 1, . . . , m are produced by monopolists (referred to as 1, . . . , m),

who set their prices strategically, i.e., maximizing profits, anticipating the impact on sales
of the final good. The remaining n inputs m + 1, . . . , m + n are produced by price-takers
(non-strategic firms), who treat their prices as fixed. A price-taker i may operate in a
competitive sector or compete as a Bertrand competitor, in which case its price is equal to
the marginal cost of the second cheapest firm in this sector. The firm could also operate
in a regulated industry and its price is set by a regulator.

To complete the description of the model, I need to specify how the price pi of firm
i affects the behavior of other monopolists, which I do by introducing the network of
influences. Formally, a network of influences consists of all m monopolists as nodes and
edges that define influences. The edges are described as an m × m adjacency matrix A,
where an element aij = 1 indicates that firm i influences firm j. That is, when firm j
chooses price pj, then it takes price pi as given and responds optimally to it. Of course,
firm i knows this and when choosing pi, it knows that j will respond optimally. Finally,
if i and j are not directly linked, i.e., aij = aji = 0, then neither responds to deviations
by the other firm. They expect the other firm to behave according to its equilibrium
strategy. For convenience, I assume that the diagonal elements aii = 0. I will discuss a
few examples of the network of influences in the next subsection.

Let me make four remarks about the model here. First, the network of influences is a
reduced-form way to capture sequential interactions. I will discuss more examples in the
next subsection, but one natural way to interpret it is through the lens of commitment
power: some monopolists may have more commitment power than others in their pricing
decisions. An alternative interpretation is bargaining power: they can make take-it-or-
leave-it offers. In this paper, I take the network as a fixed primitive of the model and do
not explicitly model its microfoundations.

Second, the price-takers are non-strategic players, so without loss of generality I replace
them by a single parameter c0 = ∑m+n

i=m+1 pi. Parameter c0 can be interpreted as a cost for
the supply chain. I denote the total per-unit cost to the supply chain by C = c0 +∑m

i=1 ci.
Third, the analysis does not require that each firm on the supply chain is either always

a price-taker or always a monopolist. The assumption that I use in the characterization
is that monopolists behave according to their local optimality condition, whereas price-
takers take their prices locally as given. A firm could be a monopolist in one situation
and a price-taker when the model parameters change.

Fourth, the network of influences makes the game sequential. If aij = 1 then firm i sets
its price pi before firm j. Firm j then observes pi and may respond optimally. Of course,
firm i knows this and therefore can anticipate the response of firm j. I am looking for
pure-strategy perfect Bayesian equilibria, where players take some of the choices of other
players as given and maximize their profits, anticipating the impact on other players’
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choices and the final good demand.8

3.2 Examples of Network of Influences
The network of influences I introduce in this paper is related to but not the same as the
supply-chain network. A typical supply-chain network specifies the flows of goods and
services (material flows), as well as the flows of money and information. The specifics
of these flows are neither necessary nor sufficient to characterize pricing decisions.9 For
pricing decisions, the model needs to specify what is known to each monopolist at the
moment it makes a pricing decision and how it expects this decision to influence the
choices of other firms. In other words, the model needs to specify the observability of
prices and the commitment power of firms. As described above, I model this by assuming
that there is a commonly known network, such that whenever there is an edge from i to
j, firm j observes pi and therefore takes it into account in its optimization problem.

Consider first a very simple case with just two firms, F (final goods producer) and R
(retailer). Then there are three possible networks, illustrated by figure 1. First, figure 1a
where firms set their prices pF and pR independently, and the final good is sold at P =
pF + pR. This could be a reasonable assumption, for example, if both are large firms that
interact with many similar firms. Then the final goods producer F does not best-respond
to a particular retailer R but to the equilibrium price p∗

R of a representative retailer.
Similarly, the retailer does not best-respond to deviations by particular producer F , but
to equilibrium price p∗

F of a representative producer. Another example where it is natural
to make this assumption is when two firms are separately selling perfectly complementary
products to final consumers.

Similarly, there could be many reasons for strategic influences. For example, a down-
stream influence from producer F to retailer R (figure 1b) may arise with a large producer
and small retailer, where the representative retailer reacts optimally to pricing by F . The
large producer knows that retailers respond to its pricing and therefore takes into account
how a representative retailer best-responds. Of course, the influence could go in the oppo-
site direction (as in figure 1c) for the same reason—a large retailer R knows that a small
producer F will best-respond to its price changes. In this paper, I take these influences
as given and simply assume that some firms have more commitment power than others
for exogenous reasons.

F R

(a) No influences

F R

(b) Downstream

F R

(c) Upstream

Figure 1: Example: Three possible two-player networks.

Let me illustrate the network of influences with three more examples. Figure 2 depicts
an example of a retail chain with downstream-to-upstream influences. In this example,

8Although I am not excluding the possibility of mixed-strategy equilibria, I show that there always
exists a unique pure-strategy equilibrium, so it is natural to focus on it.

9Indeed, my model can be alternatively interpreted as a system of perfectly complementary products,
where producers make their pricing decisions over time (Matutes and Regibeau, 1992).
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there is a strong retailer R, who can commit to adding a markup pR on top of the wholesale
price PW , so that the price of the final good will be P = PW +pR. The wholesaler W takes
pR as given and commits to its markup pW , so that when the distributor’s price is PD,
then wholesale price is PW = PD + pW and therefore final good price P = PD + pW + pR.
Then distributor D sets its markup pD taking markups pW and pR as given. Finally, the
final good producer F sets a price pF , taking into account that final consumer will pay
P = pF + pD + pW + pR.

F D W R
A =


F D W R

F 0 0 0 0
D 1 0 0 0
W 1 1 0 0
R 1 1 1 0


Figure 2: Example: Retail chain with downstream-to-upstream influences.

Influences can also go in the opposite direction. Figure 3 gives an example of a
production chain. In this example, there is a small producer F who produces the final
good and uses three inputs, produced by intermediate good producers I1, I2, and I3. Firm
F takes the prices of its inputs PI1 , PI2 , and PI3 as given and chooses the price for the final
good, PF = P . Intermediate good producer I2 uses two raw materials as inputs, produced
respectively by R1 and R2. In this example, firm I2 when choosing PI2 takes PR1 and
PR2 as given. Importantly, as firms I1 and I3 do not use these inputs, they do not know
the realized prices offered by R1 and R2, but they can make equilibrium conjectures.
Therefore, while firms I1 and I3 take into account the equilibrium prices P ∗

Ri
in their

optimization problem, they cannot respond to potential deviations in PRi
, whereas firms

I2 and F can and do respond to these deviations. It is convenient to redefine prices as
net prices, net of transfers to the other firms, i.e., pR1 = PR1 , pR2 = PR2 , pI1 = PI1 , pI2 =
PI2 − pR1 − pR2 , pI3 = PI3 , and pF = P − pI1 − pI2 − pI3 − pR1 − pR2 , so that ∑i pi = P .

R1

R2

I1

I2

I3

F
A =



R1 R2 I1 I2 I3 F

R1 0 0 0 1 0 1
R2 0 0 0 1 0 1
I1 0 0 0 0 0 1
I2 0 0 0 0 0 1
I3 0 0 0 0 0 1
F 0 0 0 0 0 0


Figure 3: Example: Production chain with upstream-to-downstream influences.

There is no reason to assume that the flows of influence are all going in the same
direction or that the network is a tree. Figure 4 gives another example, where the same
raw material L (labor) is used by three firms, T (transport), F (final goods producer), and
C (communication). These three firms set their prices independently, but F additionally
takes the markups of the D (distributor) and R (retailer) as given.
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L

T

F

C

D R
A =



L T F C D R

L 0 1 1 1 0 0
T 0 0 0 0 0 0
F 0 0 0 0 0 0
C 0 0 0 0 0 0
D 0 0 1 0 0 0
R 0 0 1 0 1 0


Figure 4: Example: a network with a small producer and a common raw-material producer

3.3 Regularity Assumptions
I make three technical assumptions that are sufficient for the existence and uniqueness of
the equilibrium. The first assumption specifies the class of networks.

Assumption 1. Network A is acyclic and transitive.10

It is natural to assume that the network is acyclic. If firm j takes pi as given, then it
simply cannot be that firm i takes its decision pj as given. A similar argument applies
to cycles of more than two players. Note the assumption allows firms i and j to make
independent choices when aij = aji = 0 and the network does not have to be connected.11

The transitivity requires that if i influences j and j influences k, then i also influences
k directly, i.e., k takes both pj and pi as given. In the examples above this was a natural
assumption. Relaxing transitivity assumption would add the possibility of signaling to
the game. For example, suppose that in the network described by figure 4 there is no
edge from R to F . Then firm F knows that pR will be added to the price, but does not
know the value. However, since F knows pD and D knows pR, the price pD may reveal
some information about pR. Transitivity assumption excludes such signaling possibilities
and thus simplifies the analysis significantly.12

The second regularity assumption puts standard restrictions on the demand function.
The demand function D(P ) is a smooth and strictly decreasing function. It either has a
finite saturation point P at which the demand is zero or converges to zero fast enough so
that profit maximization problem is well-defined.

Assumption 2. Demand function D : [0, P ) → R+ is continuously differentiable and
strictly decreasing in [0, P ) where P ∈ R+ ∪ {∞}. Moreover, it satisfies limit condition
limP →P PD(P ) = 0.

The third and final regularity assumption ensures that the demand function D(P )
is well-behaved so that the optimum of each firm can be found using the first-order
condition. It is common in the literature to make a regularity assumption that D is twice
differentiable and profits single-peaked. In particular, in theoretical works the demand is

10Acyclicity: ∄i1, . . . , ik such that ai1i2 = · · · = aik−1ik
= aiki1 = 1. Equivalently, Am = 0, where m is

the number of monopolists. Transitivity: if aij = ajk = 1, then aik = 1. Equivalently, A ≥ A2.
11Acyclicity is also helpful in terms of tractability. Recent papers by Galeotti et al. (2021); Pellegrino

(2023) have related models without acyclicity, but they do not allow for sequential decisions.
12Compared to typical signaling models, the private information here is about the choices of other

players (deviations in particular) rather than some underlying uncertainty.
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often assumed to be linear for tractability. However, in empirical literature logit demand
is more common. Here I make an assumption about the demand function that would be
analogous to the standard regularity assumption and covers both linear and logit demand
functions.

Let the depth of the network d(A) be the length of the longest path in A.13 For
example, in figure 4 depth d(A) = 3 (from the path R → D → F ). Moreover, let me
define a function

g(P ) = − D(P )
D′(P ) , (1)

which is a convenient alternative way to represent the demand function. Note that g(P ) =
P

ε(P ) , where ε(P ) = −dD(P )
dP

P
D(P ) is the demand elasticity.14 Then I make the following

assumption about the shape of the demand function.

Assumption 3. g(P ) is strictly decreasing and d(A)-times monotone in P ∈ (0, P ), i.e.,
for all k = 1, . . . , d(A), derivative dkg(P )

dP k exists and (−1)k dkg(P )
dP k ≥ 0 for all P ∈ (0, P ).

To interpret the condition, let us look at the standard monopoly pricing problem
maxP π(P ) = maxP (P −C)D(P ). Then the first-order necessary condition for optimality
of P ∗ is

π′(P ∗) = D(P ∗) + (P ∗ − C)D′(P ∗) = 0 ⇐⇒ P ∗ − C = g(P ∗), (2)

which illustrates the convenience of the g(P ) notation. Moreover, a sufficient condition
for optimality is π′′(P ∗) < 0 or equivalently 2[D′(P ∗)]2 > D(P ∗)D′′(P ∗). Note that a
sufficient condition for this is [D′(P ∗)]2 > D(P ∗)D′′(P ∗), which is equivalent to g′(P ∗) <
0. Therefore in the standard monopoly problem, monotonicity of g(P ) guarantees that
monopoly profit has a unique maximum that can be found using the first-order approach.
For general networks, the condition is stronger, as it also guarantees that best-responses
and best-responses to best-responses are well-behaved so that the first-order approach is
valid.

As illustrated by the monopoly example, the condition is sufficient and not necessary,
but it is easy to check and it is satisfied for many applications. The following propo-
sition provides a formal statement by showing that with many typical functional form
assumptions on D(P ), the function g(P ) is completely monotone, i.e., d-times monotone
for arbitrarily large d ∈ N. Therefore assumption 3 is satisfied with all networks.

Proposition 1 (Many demand functions imply completely monotone g(P )). Each of the
following demand functions implies d-times monotone g(P ) for any d ∈ N:

1. Linear demand D(P ) = a − bP with a, b > 0 ⇒ g(P ) = P − P , where P = a
b

> 0.

2. Power demand D(P ) = d β
√

a − bP with d, β, a, b > 0 ⇒ g(P ) = β(P − P ).

3. Logit demand D(P ) = d e−αP

1+e−αP with d, α > 0 ⇒ g(P ) = 1
α

[
1 + e−αP

]
.

4. Exponential demand D(P ) = a−beαP with a > b > 0, α > 0 ⇒ g(P ) = 1
α

[
Pe−αP − 1

]
.

13Formally, d(A) is smallest d is such that Ad = 0.
14Technically, g(P ) is the reciprocal of the demand semi-elasticity.
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Note that for all four functions assumption 2 is clearly also satisfied. Linear and
power demand functions have saturation point P , logit demand satisfies limP →∞ PD(P ) =
d limP →∞

1
αeαP = 0, and exponential demand has saturation point P = 1

α
log a

b
.15

4 Characterization
In this section, I first discuss two examples illustrating the complications arising from
the non-linearities and the network structure. I use these examples to illustrate the
techniques that I use for equilibrium characterization. The main result of the paper is
the characterization theorem that formalizes the approach.

4.1 Example: Non-linear Demand
The first example illustrates the complexities that arise from working with a non-linear
demand function when the decisions are sequential. Let us consider logit demand D(P ) =

e−P

1+e−P , costless production, and two monopolists, who choose their prices sequentially, as
indicated in figure 5. That is, first firm 1 chooses price p1, which is taken into account by
firm 2, when it chooses price p2. The price of the final good is P = p1 + p2.

1 2
A =

[ 1 2

1 0 1
2 0 0

]

Figure 5: Example: two sequential monopolists

The standard method of finding the equilibrium in this game is backward induction.
It starts by finding the best-response function of firm 2, by solving maxp2 p2D(p1 + p2).
The optimality condition is

dπ2

dp2
= D(p1 + p2) + p2D

′(p1 + p2) = 0 ⇐⇒ ep2(1 − p2) = e−p1 . (3)

Solving this, gives best-response function p∗
2(p1) = 1 + W (e−(p1+1)), where W (·) is the

Lambert W function16. Substituting p∗
2(p1) to the optimization problem of firm 1 gives a

maximization problem maxp1 p1D(p1 +p∗
2(p1)). From this, we get the optimality condition

1 + e−(p1+1)−W (e−(p1+1)) = p1

(
1 + −e−(p1+1)W (e−(p1+1))

e−(p1+1) + W (e−(p1+1))

)
. (4)

Solving the equation numerically gives p∗
1 ≈ 1.2088, therefore p∗

2 ≈ 1.0994 and P ∗ ≈
2.3082. However, there is no analytic solution to optimality condition (4). This implies
that the standard approach is intractable when the network is more complex than the

15Of course, not all demand functions satisfy assumption 3. In appendix B I discuss some such examples.
t’s worth noting that assumption 3 can have distinct implications: it might influence both the existence
of an equilibrium and the characteristics of that equilibrium.

16Function W (x) is defined as a solution to x = W (x)eW (x).

10



one studied here. The backward induction cannot be used, since computing best-response
functions and substituting them to the maximization problems of other firms is not fea-
sible. The issue is tractability—since the optimality conditions are non-linear, solving
them leads to complex expressions. Replacing best-responses sequentially amplifies these
complexities.

The solution to this problem comes from Hinnosaar (2023), which proposes charac-
terizing the behavior of the following players by inverted best-response functions. The
key observation is that although equation (3) is a highly non-linear function of p1 and p2
separately, fixing P = p1 +p2 leads to a linear equation for p2 or equivalently p1 = P −p2.
Therefore, for a fixed price of the final good, P , it is straightforward to find the price of
firm 2 that is consistent with the final good price P . I denote this by f2(P ), i.e.

f2(P ) = p2 = − D(P )
D′(P ) = g(P )

where g(P ) = 1 + e−P . Firm 1 knows that if it sets its price to p1, the price of the final
good will satisfy P = p1 + f2(P ). Therefore we can think of firm 1’s problem as choosing
P to solve maxP [P − f2(P )]D(P ). Taking the first-order condition gives us

f1(P ) = p1 = P − f2(P ) = g(P )[1 − f ′
2(P )].

Therefore if the final good’s price in equilibrium is P ∗, then optimal behavior of both
players requires that P ∗ = f1(P ∗) + f2(P ∗) = 2g(P ∗) − g′(P ∗)g(P ∗). This equation is
straightforward to solve, and the same argument can be easily extended to more players
choosing sequentially.

There is one more pattern in these expressions that the characterization will exploit.
Namely, the condition for equilibrium is

P ∗ = 2g(P ∗) − g′(P ∗)g(P ∗) = 2g1(P ∗) + g2(P ∗),

where g1(P ∗) = g(P ∗) and g2(P ∗) = −g′
1(P ∗)g(P ∗). The expression on the right-hand side

consists of two elements. The first, 2g1(P ∗) captures the fact that there are two players
who each individually maximize their profits. The second g2(P ∗) captures the fact that
player 1 influences player 2. It is straightforward to verify that for example if we would
remove this influence, i.e., with two monopolists choosing their prices simultaneously, the
equilibrium condition would become P ∗ = 2g1(P ∗).

The main advantage of this approach is tractability. Instead of solving non-linear
equations in each step and inserting the resulting expressions into the next maximization
problems, which results in more complex non-linear expressions, this approach allows
combining all necessary conditions of optimality into one necessary condition. Under
assumptions 2 and 3, the resulting expression has a unique solution, which gives us a
unique candidate for an interior equilibrium. Under the same assumptions, the sufficient
conditions for optimality are also satisfied and therefore it determines unique equilibrium.

4.2 Example: Interconnected Decisions
The second example illustrates a new issue that arises in the case of networks—the deci-
sions are interconnected. For example, on the network depicted by figure 4, firms L and
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D make independent decisions, but due to their positions, they have different views on
what happens before and after them. Firm D influences only F , but L influences T and
C as well. Similarly, D takes pR as given, whereas L does not observe pR and therefore
has to have an equilibrium conjecture about the optimal behavior of R. Therefore solving
the game sequentially is not possible anymore.

To illustrate this issue, consider the simple network shown in figure 6. Let us assume
that the demand is linear D(P ) = 1 − P , and there are no costs and no price-takers.

1

2

3

4
A =


1 2 3 4

1 0 0 1 1
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0


Figure 6: Example: network with interconnected decisions

The strategies of the firms are respectively p∗
1, p∗

2, p∗
3(p1), and p∗

4(p1, p2). Let us first
consider the problem of player 4, who observes p1 and p2 and expects equilibrium behavior
from player 3. Therefore player 4 solves

max
p4≥0

p4 [1 − p1 − p2 − p∗
3(p1) − p4] ,

which gives us a condition

p∗
4(p1, p2) = 1

2 [1 − p1 − p2 − p∗
3(p1)] .

While this condition provides a condition for the best-response function p∗
4(p1, p2), we

have not yet characterized it, as it would require knowing p∗
3(p1). Player 3 solves a similar

problem, but does not observe p2 and expects p4 to be p∗
4(p1, p∗

2), that is

max
p3≥0

p3 [1 − p1 − p∗
2 − p3 − p∗

4(p1, p∗
2)]

with the optimality condition

p∗
3(p1) = 1

2 [1 − p1 − p∗
2 − p∗

4(p1, p∗
2(p1))] .

Again, computing this best-response function explicitly, requires knowing p∗
4(p1, p2), but

also the equilibrium price of player 2, i.e., p∗
2. To compute the best-response functions

explicitly (i.e., independently of each other), we first need to solve the equation system
that we get by inserting p∗

2 to the optimality condition of player 4. This gives us

p∗
3(p1) = p∗

4(p1, p∗
2) = 1

3 [1 − p1 − p∗
2] ⇒ p∗

4(p1, p2) = 1
3 [1 − p1] + 1

6p∗
2 − 1

2p2.

Note the prices p3 and p4 we have now characterized are still not the true best-response
functions, since they depend on the equilibrium price p∗

2, which is yet to be determined.
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For this we need to solve the problem of player 2, who expects player 1 to choose equilib-
rium price p∗

1
max
p2≥0

p2 [1 − p∗
1 − p2 − p∗

3(p∗
1) − p∗

4(p∗
1, p2)] .

Taking the first-order condition and evaluating it at p2 = p∗
2 gives a condition

1
6 [2 − 2p∗

1 − 5p∗
2] = 0. (5)

Finally, player 1 solves a similar problem, taking p∗
2 as fixed, i.e.

max
p1≥0

p1 [1 − p1 − p∗
2 − p∗

3(p1) − p∗
4(p1, p∗

2)] .

Again, taking the first-order condition and evaluating it at p1 = p∗
1 gives

1
3 [1 − 2p∗

1 − p∗
2] = 0. (6)

Solving the equation system equations (5) and (6) gives us p∗
1 = 3

8 , p∗
2 = 1

4 . Inserting
these values to the functions derived above gives us the best-response functions p∗

3(p1) =
1
4 − 1

3p1 and p∗
4(p1, p2) = 3

8 − 1
3p1 − 1

2p2. We can also compute the equilibrium prices
p∗

3(p∗
1) = p∗

4(p∗
1, p∗

2) = 1
8 . Therefore equilibrium price of the final good is P ∗ = 7

8 .
As the example illustrates, finding the equilibrium strategies requires solving a com-

bination of equation systems in parallel with finding the best-response functions. Each
additional edge in the network can create a new layer of complexity.

The inverted best-response approach solves this issue as follows. Consider the opti-
mization problem of firm 4. For given (p1, p2), it chooses optimal p4. We can rethink its
optimization problem as choosing the final good price P = p1 + p2 + p∗

3(p1) + p4 that it
wants to induce. We can rewrite its maximization problem as

max
P

[P − p1 − p2 − p∗
3(p1)]D(P ).

We get the optimality condition

D(P ) + [P − p1 − p2 − p∗
3(p1)]D′(P ) = 0 ⇐⇒ P − p1 − p2 − p∗

3(p1) = g(P ) = 1 − P.

This is a necessary condition for optimality, but since the problem is quadratic, it is easy
to see that it is also sufficient. This expression gives implicitly the best-response function
p∗

4(p1, p2). But more directly, the expression on the left-hand side is the optimal p4 that is
consistent with the final good price P and the optimal behavior of firm 4. Let us denote
it by f4(P ) = 1 − P . The problem for the firm 3 is analogous and gives f3(P ) = 1 − P .

Now, consider firm 2. Instead of choosing p2 it can again consider the choice of the
final good price P . Since only firm 4 observes its choice (and thus chooses p4 = f4(P ) as
a response to desired P ), the firm 2’s problem can be written as

max
P

[P − p∗
1 − p∗

3(p∗
1) − f4(P )]D(P ),

which gives us the optimality condition

[1 − f ′
4(P )]D(P ) + [P − p∗

1 − p∗
3(p∗

1) − f4(P )]D′(P ) = 0,
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or equivalently, f2(P ) = P − p∗
1 − p∗

3(p∗
1) − f4(P ) = 2(1 − P ). Analogous calculation for

firm 1 gives f1(P ) = 3(1 − P ). Now, the equilibrium price P ∗ of the final good must be
consistent with individual choices. Therefore we get a condition

P ∗ =
4∑

i=1
fi(P ∗) = 7(1 − P ∗).

Solving this equation gives us P ∗ = 7
8 and individual prices p∗

1 = 3(1 − P ∗) = 3
8 , p∗

2 = 2
8 ,

and p∗
3 = p∗

4 = 1
8 .

Notice that the same calculations could be applied easily for non-linear demand func-
tions, with some g(P ) = −D(P )

D(P ) . This would give us an equilibrium condition

P ∗ =
4∑

i=1
fi(P ∗) = 4g1(P ∗) + 3g2(P ∗),

where g1(P ) = g(P ) and g2(P ) = −g′
1(P )g(P ). This is again the same pattern that we

saw in the previous example, since the number of players is 4 and the number of edges is
3. In the case of linear demand, g1(P ) = g(P ) = 1 − P and therefore g2(P ) = 1 − P .

This example illustrates the advantage of the inverted best-response approach. As the
approach combines all necessary conditions into one, the issues of interconnected decisions
are automatically mitigated.

4.3 Characterization
As illustrated by the examples above, it is useful to define functions g1, . . . , gn, which
capture relevant properties of the demand function. They are defined recursively as

g1(P ) = g(P ) = − D(P )
D′(P ) and gk+1(P ) = −g′

k(P )g(P ). (7)

As the discussion about monopoly profit maximization and the examples illustrated, g1(P )
captures the standard concavity of the profit function, whereas g2(P ) captures the direct
discouragement effect when a firm observes the price of another firm. Functions g3, . . . , gn

play a similar role in describing higher-order discouragement effects.
Note also that the adjacency matrix A provides a convenient way to keep track of the

number of direct and indirect influences. Multiplying the adjacency matrix with a column
vector of ones, A1, gives a vector with the number of edges going out from each player
(i.e., the sum over columns). Similarly, 1′A1 is the total number of edges on the network,
i.e., the total number of direct influences. Multiplying the adjacency matrix by itself, i.e.,
A2 = AA gives a matrix that describes two-edge paths, i.e., element a2

i,j is the number of
paths from i to j with one intermediate step. Similarly, Ak is the matrix that describes
the number of all k-step paths from each i to each j. When we take k = 0, then A0 is
an identity matrix, which can be interpreted as 0-step paths (clearly, the only player that
can be reached from player i by following 0 edges is player i himself). To simplify the
notation, I assume that A0 is the identity matrix even when A = 0.

Therefore Ak1 is a vector whose elements are the numbers of k-step paths from player
i, which can be directly computed as e′

iA
k1, where ei is a column vector, where ith element
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is 1 and other elements are zeros. Similarly, 1′Ak1 is the number of all k-step paths in
the network. The following expression makes these calculations for the network described
by figure 4, which has six players, six edges, and one two-edge path (R → D → F ).



A01 A11 A21 A31

L 1 3 0 0
T 1 0 0 0
F 1 0 0 0
C 1 0 0 0
D 1 1 0 0
R 1 2 1 0

1′Ak−11 6 6 1 0


. (8)

With this notation, I can now state the main result of this paper, the characteri-
zation theorem that states that there exists a unique equilibrium and shows how it is
characterized using the components we have discussed.

Theorem 1. There is a unique equilibrium, the final good price P ∗ is the solution to

P ∗ − C =
m∑

k=1
1′Ak−11gk(P ∗), (9)

and the individual prices are p∗
i = ci +∑m

k=1 e′
iA

k−11gk(P ∗) for all i.

The proof in appendix A builds on the ideas discussed above. A few remarks are
in order. The uniqueness is straightforward to establish. Assumption 3 implies that
each gk(P ) is non-negative and weakly decreasing (this is formally shown in lemma 2 in
appendix A). The right-hand side of equation (9) is therefore decreasing, whereas the
left-hand side is strictly increasing.17 Connection to inverted best-response functions is
also clear, as the individual prices are determined by p∗

i = ci + fi(P ∗).

5 Multiple-marginalization Problem
Let me first interpret the equilibrium condition equation (9) by comparing it with the
known benchmark cases. First, when all firms are price-takers (m = 0), then the network
is empty and therefore the right-hand side of (9) is zero. As expected, the equilibrium
condition is, therefore, P ∗ = C, i.e., the price of the final good equals the marginal cost
of the final good. Standard arguments imply that this is also the welfare-maximizing
solution.

Second, suppose that there is a single monopolist, i.e., m = 1 and A = [0]. Therefore
there is a single element on the right-hand side of (9) with value g1(P ∗). We can rewrite
the condition as

P ∗ − C

P ∗ = g1(P ∗)
P ∗ = 1

ε(P ∗) , (10)

17If assumption 3 fails, equation (9) may not have a solution or may have multiple solutions. Moreover,
without assumption 3, equation (9) is only necessary but not sufficient for equilibrium. In appendix B, I
discuss some such examples.
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which is the standard inverse-elasticity rule: mark-up (Lerner index) equals the inverse
elasticity. There is a usual monopoly distortion—as the monopolist does not internalize
the impact on the consumer surplus, the price equilibrium price of the final good is higher
and the equilibrium quantity lower than the social optimum. This is also the joint profit-
maximization outcome.

Third, consider m > 1 monopolists who are making their decisions simultaneously.
That is, the network has m nodes but no edges. Analogously with a single monopolist,
we can then rewrite the equilibrium condition as

P ∗ − C

P ∗ = 1′A01
g1(P ∗)

P ∗ = m

ε(P ∗) >
1

ε(P ∗) . (11)

The total markup is now strictly higher than in the case of a single monopolist. This
is the multiple-marginalization problem—firms do not internalize not only the impact on
consumer surplus but also the impact on the other firms. Therefore the distortion is even
larger than in the case of a single monopolist, which means that both the total profits
and the social welfare are reduced compared to a single monopolist.18

The novel case studied in this paper is with multiple monopolists and some influences.
That is m > 0 and A ̸= 0. In this case, the condition can be written as

P ∗ − C

P ∗ = m

ε(P ∗) +
m∑

k=2
1′Ak−11

gk(P ∗)
P ∗ . (12)

The total markup and therefore the distortion is even higher than with m independent
monopolists. The intuition for this is simple: suppose that there is a single edge, so that
firm i influences firm j. Then, in addition to the trade-offs firm i had before, raising the
price now will reduce the profitability of firm j, who will respond by reducing its price.
Therefore pi will be higher and pj lower than with simultaneous decisions. How about
the price of the final good, which depends on the sum of pi and pj? If the reduction in
pj would be so large that the total price does not increase, then pi would not be optimal,
as the profit of firm i is (pi − ci)D(P ), i.e., increasing in pi and decreasing P , so i would
want to raise the price even further. Thus in equilibrium, it should be that the price of
the final good is increased. I formalize and generalize this observation as corollary 1. The
corollary follows from equation (9) and non-negativity of gk functions.

Corollary 1 (Magnified Multiple-marginalization Problem). Suppose that there are two
networks A and B such that

1. 1′Ak−11 ≥ 1′Bk−11 for all k ∈ {1, . . . , m} and

2. 1′Ak−11 > 1′Bk−11 for at least one k,

then both social welfare and total profit in the case of A is lower than with B.
18There are two ways to think about multiple-marginalization. Since the seminal work by Spengler

(1950), it has been mostly presented as a problem of sequential pricing. However, Cournot already
observed almost 200 years earlier that two monopolists pricing perfect complements independently would
distort the allocation more than a single monopolist pricing both (Sonnenschein, 1968). In this paper, I
analyze both. I refer to the Cournot interpretation as multiple-marginalization and the Spengler version
as magnified multiple-marginalization.
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The result shows that the multiple-marginalization problem is increased with strategic
influences but does not give a magnitude for it. To illustrate that the impact may be
severe, let me give some numeric examples. First, suppose that demand is linear, D(P ) =
1 − P , there are no costs, and there are no price-takers. Standard calculations imply that
the maximized total welfare would be 1

2 and a single monopolist would choose price 1
2 ,

which would lead to a dead-weight loss of 1
8 . Therefore with any network, the dead-weight

loss is at least 1
8 and at most 1

2 . Figure 7 illustrates the difference between the dead-weight
loss in the best case (simultaneous decisions) and the worst case (sequential decisions).
Even in the best case (blue line with triangles), the multiple-marginalization problem can
be severe and is increasing in m. However, the distortions with strategic interactions (red
line with circles) are much higher for any m, and the dead-weight loss approaches to full
destruction of the social welfare quickly. This comparison shows that strategic influences
magnify the multiple-marginalization problem with any m.

n

DWL

Figure 7: Example: comparison of dead-weight loss in the model with linear demand
between the best case (simultaneous decisions) and the worst case (sequential decisions)

How much the number of firms matters compared to strategic influences depends on
the shape of the demand function. This is illustrated by figure 8, which provides the same
comparison with a more general power demand function D(P ) = β

√
1 − P .19 When β < 1,

then relatively high weight is given to more direct influences. Indeed, figure 8a shows that
when β = 1

10 then the best-case and the worst-case dead-weight loss do not differ much.
On the other hand, when β > 1 the weight is larger on more indirect influences. This is
illustrated by figure 8b, where the difference between the two cases is large.20

19Generally DWL(P ∗) =
∫ P ∗

0 [D(P ) − D(P ∗)]dP . The calculations and the impact of β in the case of
power demand function are discussed in more detail in the next section.

20Even more generally, the relative sizes of g1(P ∗), . . . , gk(P ∗) capture the relative weights on direct
and indirect influences. If gk(P ∗) ≪ g1(P ∗) for all k, then the network structure does not play a big role.
Whereas, in the other extreme with gk(P ∗) ≫ g1(P ∗), the magnification effect is large.
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n

DWL

(a) β = 1
10

n

DWL

(b) β = 10

Figure 8: Examples: comparison of dead-weight loss with power demand D(P ) = β
√

1 − P
between the best case (simultaneous decisions) and the worst case (sequential decisions)

6 Influentiality

6.1 A Measure of Influentiality
All monopolists on the network have some market power and therefore earn strictly pos-
itive profits. But some firms are more influential than others. Which ones and how does
this depend on the network? The answer comes directly from the characterization in
theorem 1. For brevity, let me denote

Ii(A) =
m∑

k=1
e′

iA
k−11gk(P ∗), (13)

which is a sum of scalars e′
iA

k−11 weighted by gk(P ∗). Note that e′
iA

01 = 1, e′
iA

11 is
the number of players i influences, e′

iA
21 is the number of two-edge paths starting from

i, and so on. Therefore Ii(A) can be interpreted as a measure of influentiality of player i.
Fixing the equilibrium price of the final good P ∗, the individual markups are p∗

i − ci =
Ii(A) and therefore profits πi(p∗) = (p∗

i − ci)D(P ∗) = Ii(A)D(P ∗). Therefore Ii(A) fully
captures the details of the network that affect firm i’s action and payoff. Corollary 2
provides a formal statement.

Corollary 2 (Ii(A) Summarizes Influences). Ii(P ∗) > Ij(P ∗) if and only if πi(p∗) >
πj(p∗) and pi − ci > p∗

j − cj.

This measure of influentiality Ii(A) depends both on the network structure and the
demand function. There are some cases when we can say more. In particular, if firm i
has more influences in all levels than firm j, i.e. e′

iA
k−11 ≥ e′

jA
k−11 for all k and the

inequality is strict for at least one k, then Ii(A) ≥ Ij(A) regardless of the weights gk(P ∗).
The inequality is strict whenever gk(P ∗) > 0 for k such that e′

iA
k−11 > e′

jA
k−11. For

example, when firm i influences firm j, then e′
iA

k−11 ≥ e′
jA

k−11 and the inequality is
strict for at least k = 1, so Ii(A) > Ij(A) with any demand function.
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6.2 Connections with Network Centrality Measures
The measure of influentiality defined above is reminiscent of the classic measures of cen-
trality as they capture the same effects: a player is more influential if it influences either
more players or more influential players. The difference is that while the classic central-
ity measures are defined purely using network characteristics, the influentiality measure
defined here has endogenous weights that are determined by the model parameters such
as the demand function, costs, and also by the price of the final good.

In some special cases, the connection is even closer. Consider the case of power de-
mand D(P ) = d β

√
a − bP . As discussed in section 7.2, it implies linear gk(P ) = βk(P −P ).

Therefore Ii(A) = (P − P ∗)Bβ
i (A), where Bi(A)β = ∑m

k=1 βke′
iA

k−11 is the Bonacich
centrality measure of player i. The general measure Ii(A) can be thought of as a gen-
eralization of Bonacich centrality where the weights are endogenously determined by the
demand function and the equilibrium, rather than having exponential decay βk.21 Linear
demand D(P ) = a − bP is a special case of power demand with β = 1. Therefore the
influentiality measure Ii(A) simplifies to the Bonacich centrality measure with β = 1, i.e.,
equal weight for each level of influences.

However, the influence measure does not always have to have a flavor of Bonacich
centrality. Let me provide two more examples to show this. First, suppose D(P ) =
de

√
2(a−bP )/b. This a specifically constructed demand function, which implies g(P ) =

g1(P ) =
√

2(a − bP ) and therefore g2(P ) = b, which means that gk(P ) = 0 for all k > 2.
With these weights the influentiality measure simplifies to Ii(A) =

√
2(a − bP ∗)+ be′

iA1,
i.e., depends only on the number of players directly influenced by player i. That is, the
influentiality measure is a linear function of the degree centrality in this case.

For another example, consider logit demand D(P ) = d e−αP

1+e−αP . As I will show in
section 7.3, it may lead to complex expressions, but when m is large enough, then g1(P ∗) ≈
1
α

and gk(P ∗) ≈ 0 for k > 1. Therefore Ii(A) ≈ 1
α
. This means that in the case of logit

demand with sufficiently many players, the network structure does not affect the pricing of
the individual firms. The relevant centrality measure is approximately a constant. These
observations are summarized by table 1.

Demand D(P ) Influentiality Ii(A) Equivalent Network Centrality Measure
Power d β

√
a − bP

(
a
b

− P ∗
)

Bβ
i (A) Bβ

i (A) = Bonacich centrality (with β)
Linear a − bP

(
a
b

− P ∗
)

Bi(A) Bi(A) = Bonacich centrality with β = 1
de

√
2(a−bP )/b

√
2(a − bP ∗) + bDi(A) Di(A) = e′

iA1 = Degree centrality
Logit d e−αP

1+e−αP → 1
α

Approximately a constant

Table 1: Examples of demand functions with which the measure of influentiality Ii(A)
simplifies to one of the standard network centrality measures

21The standard definition of Bonacich centrality requires β < 1, otherwise the sum may not converge
and the measure would not be well-defined. As the influence networks here are acyclic, any β > 0 is
allowed. Values β ≥ 1 arise whenever D(P ) = d β

√
a − bP , which is a quite natural assumption for a

demand function.
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7 Computing the Equilibrium
In this subsection, I show how the equilibrium characterization could be used to com-
pute the equilibrium and study some of the most common demand functions where the
characterization is even simpler.

7.1 Linear Demand
Suppose that the demand function is linear D(P ) = a − bP . Then g(P ) = − D(P )

D′(P ) =
P − P = g1(P ) with P = a

b
and therefore for all k > 1, gk+1(P ) = −g′

k(P )g(P ) = P − P .
Equation (9) simplifies to

P ∗ − C =
m∑

k=1
1′Ak−11gk(P ∗) = (P − P ∗)B(A), (14)

where B(A) = ∑m
k=1 1′Ak−11 is the sum of the number of influences of all levels, i.e., the

number of players (1′A01 = m) plus the number of edges plus the number of two-edge
paths, and so on. Equation (14) is a linear equation and its solution is the equilibrium
price

P ∗ = C + PB(A)
1 + B(A) . (15)

As we would expect, increasing costs and increasing demand (P = a
b

in particular) will
raise the equilibrium price, but the pass-through is imperfect. Increasing the number of
firms or the number of connections between firms increases the equilibrium price through
the marginalization effects discussed above. Similarly, we can compute the markups for
individual firms,

p∗
i = ci +

m∑
k=1

e′
iA

k−11gk(P ∗) = ci + Bi(A)
1 + B(A)(P − C), (16)

where Bi(A) = ∑m
k=1 e′

iA
k−11 is the sum of influences of firm i, i.e., e′

iA
01 = 1 (“influ-

encing” oneself) plus e′
iA

11 = number of players i influences plus the number of paths
starting from i. By construction B(A) = ∑m

i=1 Bi(A).
Consider the example of network described by figure 4, for which the corresponding

Ak−11 terms are computed in equation (8). Suppose that D(P ) = 1 − P , and there
are no costs and no price-takers (C = 0). Then B(A) = 6 + 6 + 1 = 13 and therefore
P ∗ = B(A)

1+B(A) = 13
14 . Similarly, individual prices p∗

i = Bi(A)
1+B(A) . For example, p∗

L = 4
14 , p∗

T =
p∗

F = p∗
C = 1

14 , p∗
D = 2

14 , and p∗
R = 4

14 . In particular, observe that p∗
L = p∗

R, but for
different reasons—firm L influences three firms directly, whereas R influences two firms
directly and one indirectly. In the case of linear demand, these two types of influences
are weighted equally.

7.2 Power Demand
The calculations are similar for more general power demand D(P ) = d β

√
a − bP . Then

g(P ) = β(P − P ) with P = a
b

and therefore gk(P ) = βk(P − P ), so that equation (9)
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gives the same expression for the equilibrium price of the final good

P ∗ = C + PBβ(A)
1 + Bβ(A) (17)

but now Bβ(A) = ∑m
k=1 βk1′Ak−11, i.e., the influences in various levels are weighted by

1, β, β2, . . . . Then β can be interpreted as decay or discount factor for more indirect
influences.22 Similarly, for individual firms,

p∗
i = ci + Bβ

i (A)
1 + Bβ(A)(P − C), (18)

where Bβ
i (A) = ∑m

k=1 βke′
iA

k−11, i.e., influences are again weighted by factor βk.
Consider the example from figure 4 again, with C = 0, and demand function D(P ) =

β
√

1 − P . In particular, if β = 1
2 , then B

1
2 (A) = 6 + 1

26 + 1
41 = 37

4 , so P ∗ = 37
41 . As

anticipated above, since higher weight is on direct influences than indirect influences, firm
L sets a higher price (and earns higher profit) than firm R, p∗

L = 10
41 > p∗

R = 9
41 . This is

also the reason why the difference between the worst-case and the best-case on figure 8a
was relatively small. On the other hand, β = 2 implies P ∗ = 22

23 and p∗
L = 7

23 < p∗
D = 9

23 ,
since now the weight is higher on indirect influences. This explains the larger difference
in figure 8b.

7.3 Logit Demand
Take logit demand D(P ) = d e−αP

1+e−αP with α > 0. Then g(P ) = 1
α

[
1 + e−αP

]
.

Let us first consider the example discussed in previous subsections to illustrate how the
characterization result could be used for more complicated demand functions. Suppose
again that C = 0 and the network is the one described by figure 4. Since the depth of the
network is d(A) = 3, we need to compute functions

g1(P ) = g(P ) = 1
α

[
1 + e−αP

]
,

g2(P ) = −g′
1(P )g(P ) = 1

α

[
1 + e−αP

]
e−αP ,

g3(P ) = −g′
2(P )g(P ) = 1

α

[
1 + e−αP

]
e−αP

[
1 + 2e−αP

]
.

The equilibrium condition (9) takes the form P ∗ = 6g1(P ∗) + 6g2(P ∗) + g3(P ∗), which is
straightforward to solve numerically. For example, when α = 1, we get

P ∗ = 6 + 13e−P ∗ + 9e−2P ∗ + 2e−3P ∗
,

which implies P ∗ ≈ 6.0313 and individual prices p∗
L ≈ 1.0096, p∗

T = p∗
F = p∗

C ≈ 1.0024, p∗
D ≈

1.0048, and p∗
R ≈ 1.0096.

The numeric results point to a more specific property of the equilibrium behavior
in the case of logit demand. Namely, all prices are only slightly above 1. Inspecting

22Note that β > 0 (as otherwise demand would not be decreasing), but it can be bigger or smaller than
1. In fact, when β = 1 the demand function is linear, so that Bβ(A) = B(A).
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n

P∗

n − 1

Figure 9: Bounds for equilibrium prices with logit demand D(P ) = e−P

1+e−P and C = 0
depending on the number of firms.

gk(P ) functions above reveals the reason. Namely, the term e−αP ∗ converges to zero as P ∗

increases. Therefore, for sufficiently large P ∗, the weight g1(P ∗) converges to a constant 1
α
,

whereas the weights gk(P ∗) for k > 1 converge to zero. Therefore, if the equilibrium price
P ∗ is large enough, it is almost fully driven by the number of players. This observation
is formalized as the following lemma 1.

Lemma 1 (Approximate Equilibrium with Logit Demand). With logit demand D(P ) =
d e−α

1+e−αP , the price of final good P ∗ and individual prices p∗
i satisfy the following conditions

1. P ∗ > C + m
α

and p∗
i > ci + 1

α
for all i,

2. P ∗ = C + m
α

+ O
([

2
e

]m)
and p∗

i = ci + 1
α

+ O
([

2
e

]m)
for all i.23

Lemma 1 implies when m is large enough, then P ∗ ≈ C + m
α

and each p∗
i ≈ ci + 1

α
.

This is a limit result, but as we saw from the example above, the approximation with
m = 6 seems already quite precise. Figure 9 illustrates that the convergence is indeed
fast. It shows that while for small numbers of players, there is a difference between the
lower bound (simultaneous decisions) and the upper bound (sequential decisions), the
difference shrinks quickly and becomes negligible with 5–10 players. In particular, the
figure illustrates that 1

m

[
P ∗ − C − m

α

]
≈ 0 for any network with about ten players or

more.

8 Discussion
This paper characterizes the equilibrium behavior for a general class of price-setting games
on a network. Under regularity assumptions, there is a unique equilibrium, which is
straightforward to compute even with non-linear demands functions and complex net-
works. For the most common demand functions, such as linear, power, and logit demand,
I provide even simpler characterization results.

23Where f(m) = O(g(m)) means that lim supm→∞

∣∣∣ f(x)
g(x)

∣∣∣ < ∞.
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The key distortion is the multiple-marginalization, which leads to too high markups
both for efficiency and joint profit maximization. The marginalization problem increases
with the number of firms but is magnified by strategic interactions. Firms set too high
markups, not only because they do not internalize the negative impact on consumer
surplus and other firms’ profits, but also because they benefit from discouraging the other
firms from setting high markups.

The results define a natural measure of influentiality that ranks firms according to
their markups and profits. Firms are more influential if they influence more firms or more
influential firms. In some special cases, the influentiality measure simplifies to standard
measures of centrality. I give examples where it takes the form of Bonacich centrality,
degree centrality, or is independent of the network structure.

The results of this paper are quite general in terms of network structure and demand
functions, but do I make several simplifying assumptions in other areas. For example, I
assume constant marginal costs, which provides the model with tractability. Additionally,
I model the competition in an extreme way, with firms either being monopolists or price-
takers. This covers some intermediate cases, where firms may have market power in
certain price ranges but become price-takers at higher prices. It would be interesting to
study intermediate forms of imperfect competition. It would be natural to expect that a
market power for an oligopolistic supplier of an input is between the two extremes.

In this paper, the analysis is described in terms of price setting on a supply-chain
network that supplies a single final product. There are other applications fitting the same
mathematical model. An obvious example is multiple monopolists sell perfect comple-
ments. More generally, the model applies whenever multiple players choose actions, so
that their payoffs depend linearly on their own actions, the marginal benefit is a decreasing
function of the total action, and the actions are (higher-order) strategic substitutes. For
example, the private provision of public goods and contests satisfy this general description.

Finally, the results have significant policy implications, which I have not discussed so
far. In the following, I describe two simple examples to highlight two important policy
implications. First, when analyzing mergers and acquisitions, it is crucial for the regulator
to consider how the network of influences is affected. Second, in trade policy, small
increases in any tariffs typically hurt all players, but more influential firms are harmed
the most. Moreover, when considering non-marginal changes in trade policy, it is again
crucial to consider the impact on the network as a whole.

8.1 Example: Mergers
To highlight how merger policy can be affected by changes in the network of influences,
consider the following example with four monopolists. Firm 1 produces a raw material
that is an input for two intermediate good producers, firms 2 and 3. The final good
producer firm 4 uses inputs from firms 1, 2, and 3 to produce the final good and sell it
to the final consumer directly. Let us assume that before the merger firms 2 and 4 are
influenced by firm 1. Firm 3 makes a choice independently of firm 1 and influences firm
4. This is illustrated by figure 10a. To make the example more concrete, suppose that
there are no costs and the demand function is D(P ) = β

√
1 − P with β > 0, which allows

us to use explicit formulas from section 7.2.
Suppose now that firms 1 and 2 would like to merge so that the new form (called

23



1

2

3

4

(a) Pre-merger

1+2

3

4

(b) Scenario A

1+2

3

4

(c) Scenario B

Figure 10: Examples: merger scenarios for firms 1 and 2.

1 + 2) would produce both the raw material and the first intermediate good. Should the
competition authority approve the merger? There are a few important aspects that the
policymaker may consider. First, how does it affect the competition? By assumptions,
we are analyzing the production of a single product with fixed demand function and
monopolistic input providers, so the competition remains unaffected. Second, does it lead
to cost reductions or synergies? Again, we assume that there are no costs, so this remains
unaffected. Third, there is one less firm, which reduces the marginalization problem.
Combining these arguments, conventional wisdom suggests that the merger is socially
desirable.

However, notice that the network of influences is necessarily changed as firm 1 + 2
now makes a joint profit maximization decision. The key question is, what does the new
network of influences look like? Let us consider two scenarios.

Scenario A: after the merger, the new firm 1 + 2 simply internalizes all the influences
within the former firms 1 and 2 and interactions with the remaining firms 3 and 4 are
unchanged (figure 10b). It is easy to see that due to strict reduction of marginalization,
the price of the final good goes down, which means that both the consumer surplus and
the total profit of all firms strictly increase. But the profit of the firm 1 + 2 is higher than
the individual profits of firms 1 and 2 if and only if β is low enough (β ≤ β ≈ 0.4256).
The merger increases the total profit of all firms but reduces the influentiality of firms 1
and 2, who are then able to capture a smaller share of the profits. They are only willing
to merge when the first effect dominates. We can conclude that it is a socially desirable
merger but does not happen unless β is small enough.24 Suppose a regulator considers a
request for permission from firms 1 and 2 to merge and the estimated demand function
has β > β. In that case, this is might not the right scenario to consider.

Scenario B: Suppose alternatively that after the merger, the new firm 1 + 2 becomes
more influential, so that it can also influence the decision of firm 3, as illustrated by fig-
ure 10c. Now there are three direct influences as in the pre-merger scenario. Importantly,
there is one less firm but one more indirect influence (1 + 2 → 3 → 3), which means that
the price of the final good decreases if and only if β ≤ 1. Otherwise, this new merger
is not socially desirable. However, it is straightforward to verify that the joint profits of

24This scenario is inspired by Salant et al. (1983), who showed that in Cournot oligopoly, the total
profit may increase if some firms merge, while the profits of the merging firms are decreasing. As they
did not consider sequential choices, the indirect effects considered here were not applicable, while here
they may change the conclusions.
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firms 1 and 2 are lower than the profit of the new firm 1 + 2 for all β. Therefore this is a
merger that would always happen but is socially desirable only if β is not too large. For
example, if the regulator has a good reason to believe that β > 1, such a request to merge
should be denied, which contradicts the conventional wisdom discussed above.

8.2 Example: Trade
The previous discussion already illustrates the importance of taking the changes in the
network of influences into account when considering policy decisions. The same message
applies to trade policies as well. Changes in tariffs or quotas and any trade restrictions
influence the supply chains and the interactions of firms within a supply chain. Therefore
they naturally impact the network of influences. The results in this paper provide a tool
to compare the outcomes under different scenarios.

In the simplest case, when changes in tariffs are marginal so that the network of
influences is unchanged, theorem 1 provides specific predictions. In particular, let us
assume that the marginal cost of each input is ci = ĉi + ti, where ĉi is the physical cost
and ti is the tariff on good i. Then changes in tariffs can be thought of as changes in
c = (c0, c1, . . . , cn).25

A surprising implication of theorem 1 is that when the changes are marginal, only
the total marginal cost C = ∑m

i=0 ci affects the equilibrium price, profits, consumer sur-
plus, and total welfare. Moreover, the equilibrium price is increasing, and all payoffs are
decreasing with C. This is easy to see from equation (9). Differentiating the equation
gives

P ∗ −
m∑

k=1
1′Ak−11gk(P ∗) = C ⇒ dP ∗

dC
= 1

1 −∑m
k=1 1′Ak−11g′

k(P ∗)
> 0. (19)

as each g′
k(P ∗) ≤ 0. Therefore only the aggregate changes in tariffs affect the equilibrium

price of the final good. Clearly, consumer surplus depends only on the price of the final
good. Although individual prices p∗

i are affected by individual tariffs, the individual
equilibrium profits πi(p∗) = Ii(A)D(P ∗) are only affected by tariffs through their impact
on the price of the final good. Any increase in the sum of tariffs leads to an increase
in the price of the final good and therefore decrease in profits that are proportional to
influentiality measure Ii(A). So, the more influential firms are affected more by the tariffs,
regardless of which individual tariffs or subsidies are imposed. Finally, defined as the sum
of consumer surplus, all profits, and the tariff revenues are marginally affected as

TW =
∫ ∞

P ∗
D(P )dP︸ ︷︷ ︸

=Consumer Surplus

+ D(P ∗)(P ∗ − Ĉ − T )︸ ︷︷ ︸
=
∑

i
π∗

i

+D(P ∗)T. (20)

The direct effects of tariffs cancel out as profits are reduced exactly by the tariff revenue.
The only effect is through the change in the price of the final good, which is increasing

25In this simple example, I do not take into account many crucial elements of trade policies, such as
the redistribution of profits between domestic and foreign entities or even different countries. It would
be more accurate to refer to this exercise as an examination of changes in marginal taxes. However, for
the sake of interpretive clarity, I will continue to refer to them as tariffs.
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in tariffs. Differentiating total welfare with respect to the equilibrium price of the final
good gives

dTW

dP ∗ = −D(P ∗)+D′(P ∗)(P ∗ − Ĉ)+D(P ∗) = D′(P ∗)(P ∗ − Ĉ) < 0 ⇐⇒ P ∗ > Ĉ. (21)

This is a standard textbook finding implying that the socially optimal tax on a monopoly
is, in fact, a subsidy that equalizes price with marginal cost.

Note that there are important aspects missing from this simple application of the
model. The main goal of using tariffs and other trade policies is to affect trade flows.
This changes the supply chain network and the network of influences. As highlighted in
the discussion above, it may have a large impact both on the consumer surplus and the
profits and should be therefore considered in any such policy evaluation.
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A Proofs

A.1 Proof of proposition 1
Proof. In each case, I directly verify the claim:

1. Linear demand is a special case of power demand with d = β = 1.

2. Power demand implies g(P ) = − d(a−bP )
1
β

d 1
β

(a−bP )
1
β

−1(−b)
= β(P − P ), where P = a

b
. Then

−g′(P ) = β > 0 and (−1)k dkg(P )
dP k = 0, for all k > 1.

3. Logit demand implies g(P ) = 1
α

[
1 + e−αP

]
. Then (−1)k dkg(P )

dP k = αk−1e−αP > 0.

4. Exponential demand implies g(P ) = 1
α

[
Pe−αP − 1

]
. Therefore (−1)k dkg(P )

dP k =
αk−1Pe−αP > 0.

A.2 Proof of theorem 1
Before the proof, let me introduce some useful notation. Each player i ∈ N = {1, . . . , m},
observes prices of some players. Let the set of these players be Oi = {j : aji = 1} ⊂ N
(possibly empty set) and vector of these prices pi = (pj)j∈Oi

. Player i’s strategy is p∗
i (pi).

Player i also influences some players, let the set of these players be Ii = {j : aij = 1} ⊂ N
(again, possibly empty). Each such player j ∈ Ii uses the equilibrium strategy p∗

j(pj). By
definition, i ∈ Oj, i.e., pi is one of the inputs in pj. However, i does not necessarily observe
all prices in pj, therefore it must make an equilibrium conjecture about these values. Let
pi

j(pi, pi) denote player j’s action as seen by player i. That is, pi
j(pi, pi) = p∗

j(p′
j), where

pj = (p′
k)k∈Oj

is such that p′
k = pk if k ∈ Oi or k = i and p′

k = pi
k(pi, pi) otherwise. The last

step makes the definition recursive, but it is well-defined, as each such step strictly reduces
the number of arguments in the function. Finally, there are also some players whose prices
that i neither observes nor influences, let this set be Uj = {j : aji = aij = 0} ⊂ N . For
these players, i expects the actions to be pi

j(pi) defined in the same way as above, but its
arguments do not include pi.

Using this notation, a firm i that observes pi and sets its price to pi, expects the price
of the final good to be

P i(pi|pi) = c0 + pi +
∑

j∈Oi

pj +
∑
j∈Ii

pi
j(pi, pi) +

∑
j∈Ui

pi
j(pi). (22)

The main idea in the proof is the following. Instead of choosing price pi to maximize
profit (pi − ci)D(P i(pi|pi)), we can think of player i choosing the final good price P
to induce. For this, let me assume that in the relevant range, P i(pi|pi) is smooth and
strictly increasing in pi, so that it has a differentiable and strictly increasing inverse
function fi(P |pi) such that P i(fi(P |pi)|pi) = P . Then the maximization problem is

max
P

[fi(P |pi) − ci]D(P ),
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which leads to first-order condition f ′
i(P |pi)D(P )+[fi(P |pi)−ci]D′(P ) = 0 or equivalently

fi(P |pi) − ci = g(P )f ′
i(P |pi). (23)

Note that there is one-to-one mapping between representing equilibrium behavior in terms
of functions fi(P |pi) and in terms of p∗

i (pi).

Proof. Observe that the equilibrium must be interior, i.e., each ci < pi < P for each firm.
If this is not the case for the firm i, then its equilibrium profit is non-positive. This could
be for one of two reasons. First, the equilibrium price of the final good is so high that
D(P ) = 0. In this case, all equilibrium profits are non-positive and there must be at least
one firm i who, by reducing its price (and anticipating the responses of firms influenced),
can make the final good price low enough so that it ensures a strictly positive profit. This
would be a profitable deviation. Second, if P < P and pi ≤ ci, then firm i can raise its
price slightly and increase its profit.

I will first derive necessary conditions for an interior equilibrium and combine them
into one necessary condition, which gives equation (9). I then show that it has a unique
solution and finally verify that it is indeed an equilibrium by verifying that each firm
indeed chooses a price that maximizes its profit.

Let us start with any player i who does not influence any other players, i.e., e′
iA1 = 0

or equivalently Ii = ∅. Then we can rewrite equation (22) as

P = c0 + fi(P |pi) +
∑

j∈Oi

pj +
∑
j∈Ui

pi
j(pi). (24)

Differentiating this expression with respect to P shows that f ′
i(P |pi) = 1 (that is, player

i can raise the price of the final good by ε by raising its own price by ε). Therefore
equation (23) implies fi(P |pi) = ci + g(P ). Note that this expression is independent of
pi, so I can drop it as an argument for fi and write simply as fi(P ) = ci + g(P ).

Let us take now any player i and suppose that the optimal behavior of all players
j ∈ Ii is described corresponding functions fj(P ) that do not depend on the remaining
arguments pj. Then we can rewrite equation (22) as

P = c0 + fi(P |pi) +
∑

j∈Oi

pj +
∑
j∈Ii

fj(P ) +
∑
j∈Ui

pi
j(pi). (25)

Differentiating this expression and inserting it to equation (23) gives

f ′
i(P |pi) = 1 −

∑
j∈Ii

f ′
j(P ) ⇒ fi(P |pi) = g(P )

1 −
∑
j∈Ii

f ′
j(P )

 . (26)

This expression is again independent of the arguments pi, which we can therefore drop.
Moreover, these arguments give precise analytic expressions for fi(P ) functions. We
already saw that fi(P ) = g(P ) = ∑m

k=1 e′
iA

k−11gk(P ) when e′
iA

k−11 = 0 for all k > 1
(i.e., players who do not influence anybody). Suppose that every player j ∈ Ii has

fj(P ) − cj =
m∑

k=1
e′

jA
k−11gk(P ). (27)

31



Then for player i we must have

fi(P ) − ci = g(P )
1 −

∑
j∈Ii

f ′
j(P )

 = g(P )︸ ︷︷ ︸
=e′

iA
01g1(P )

+
m∑

k=1
[−g′

k(P )g(P )]︸ ︷︷ ︸
gk+1(P )

, (28)

which, after change of variables from k to k − 1 and combining the terms, gives the same
expression as in equation (27).26

Therefore on-path, when the equilibrium price of the final good is P ∗, the individual
prices are indeed given by the expressions in the theorem. The price of the final good
must be sum of all the input prices, therefore P ∗ must satisfy

P ∗ = c0 +
∑
i∈N

fi(P ∗) = c0 +
∑
i∈N

cj︸ ︷︷ ︸
=C

+
m∑

k=1

∑
i∈N

e′
iA

k−11︸ ︷︷ ︸
=1′Ak−11

gk(P ∗),

which gives the equation (9).
Below I prove two technical lemmas (lemmas 2 and 3) provide monotonicity properties

that imply existence and uniqueness of equilibria. We can rewrite equation (9) as f(P ) =
P −C −∑m

k=1 1′Ak−11gk(P ) = 0. At P = 0 we have f(0) = −C −∑m
k=1 1′Ak−11gk(0) < 0

and limP →P f(P ) > 0. By lemma 3, function f(P ) is strictly increasing and therefore
f(P ) = 0 has a unique solution, which is the equilibrium price of the final good P ∗ ∈
(0, P ).

Next, in the argument above, we assumed that the inverse function of fi(P ) function is
strictly increasing. The construction implied a necessary condition that fi(P ) must satisfy
and lemma 3 shows that it implies that fi(P ) is indeed strictly increasing, therefore the
inverse function P i(pi|pi) is indeed a well-defined strictly increasing function. Finally, to
verify that the solution we found is indeed an equilibrium, we need to verify that the
solution we derived is indeed a global maximizer for each firm. Notice that by lemma 3,
the optimality condition equation (23) has a unique solution for each firm. Therefore
we have identified a unique local optimum for each firm. As we already verified that
corner solutions would give non-positive profits for each firm and the interior solution
gives strictly positive profit, this must be a global maximizer.
Lemma 2 (Monotonicity of gk(P )). gk(P ) is (d(A) + 1 − k)-times monotone.

Proof. g1(P ) = g(P ) = − D(P )
D′(P ) is d(A)-times monotone by assumption 3. Therefore g′(P )

is (d(A) − 1)-times and g2(P ) = −g′
1(P )g(P ) is (d(A) − 1)-times monotone. The rest

follows by induction in the same way, if gk(P ) is (d(A) + 1 − k)-times monotone, then
gk+1(P ) = −g′

k(P )g(P ) is (d(A) − k)-times monotone.

Lemma 3 (Monotonicity of f(P ), fi(P )). The following monotonicity properties hold

1. f(P ) = P − C −∑m
k=1 1′Ak−11gk(P ) is strictly increasing,

2. fi(P ) = ci −∑m
k=1 e′

iA
k−11gk(P ) is strictly increasing for each i ∈ {1, . . . , m},

26Note that no player can have level-m influences, i.e., e′
iA

m1 = 0.
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3. f ′
i(P )g(P ) = ∑m

k=1 e′
iA

k−11gk(P ) is (weakly) decreasing for each i ∈ {1, . . . , m}.

Proof. Each 1′Ak−11 and e′
iA

k−11 is a non-negative integer and each gk(P ) weakly de-
creasing in −P by lemma 2, which implies weak monotonicity of f ′

i(P )g(P ). More-
over, when k = 1, then g1(P ) = g(P ) which is strictly decreasing by assumption 3 and
e′

iA
k−11 = 1 > 0, which implies that fi(P ) is strictly increasing. As P − C is strictly

increasing, then f(P ) is also strictly increasing.

A.3 Proof of lemma 1
Remark: The equilibrium prices in our model, denoted as P ∗ and p∗

i , are determined by
all parameters of the model. In particular, the equilbrium prices depend on the number
of monopolists (m), their costs (ci), and the network’s structure (A).

Proof. Using the facts that g(P ) = 1
α

[
1 + e−αP

]
> 1

α
and gk(P ) > 0 for all k > 0,

equation (9) gives P ∗ = C +∑m
k=1 1′Ak−11gk(P ∗) > C + mg(P ∗) > C + m

α
. Similarly for

individual prices, p∗
i = ci +∑m

k=1 e′
iA

k−11gk(P ∗) > ci + g(P ∗) > ci + 1
α
.

Using the lower bound for P ∗, we can bound e−αP ∗
< e−αC−α m

α = e−αCe−m. Therefore
e−αP ∗ = O(e−m). I use this result to prove lemma 4 that shows that g1(P ∗) = 1

α
+O(e−m)

and gk(P ∗) = O(e−m) for all k > 1. Using this, we can define Gm(P ∗) as follows

Gm(P ∗) ≡ max
{

g1(P ∗) − 1
α

, g2(P ∗), . . . , gm(P ∗)
}

= O(e−m).

Therefore equation (9) gives

P ∗ ≤ C + m

α
+

m∑
k=1

1′Ak−11Gm(P ∗) = C + m

α
+ O(e−m)B(A), (29)

where B(A) = ∑m
k=1 1′Ak−11. Now, note that B(A) increases each time an edge is

added to A, so its upper bound is when the network is most connected (fully sequential
decisions) and lower bound with least connected network (simultaneous decisions), so that
m ≤ B(A) ≤ 2m − 1. Therefore B(A) = O(2m). Inserting this observation to previous
expression gives P ∗ = C + m

α
+ O

([
2
e

]m)
. Finally, for the equilibrium expression for

individual prices is

p∗
i = ci +

m∑
k=1

e′
iA

k−11gk(P ∗) = ci + 1
α

+ O(e−m)Bi(A), (30)

where Bi(A) = ∑m
k=1 e′

iA
k−11, which is by the same arguments as above Bk(A) = O(2m)

and therefore pi = ci + 1
α

+ O
([

2
e

]m)
.

Lemma 4. With logit demand D(P ) = d e−α

1+e−αP , functions gk(P ) and their derivatives
have the following limit properties at P = P ∗

1. g1(P ∗) = 1
α

+ O(e−m) = O(1), gk(P ∗) = O(e−m) for all k ∈ {2, . . . , m},
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2. dlgk(P ∗)
dP l = O(e−m) for all k, l ∈ {1, . . . , m}.

Proof. We showed that e−αP ∗ = O(e−m). Consider g1(P ∗) first. We get g1(P ∗) = g(P ∗) =
1
α

+ 1
α
e−αP ∗ = 1

α
+ O(e−m) = O(1). Therefore, dlg1(P ∗)

dP l = −(−α)l−1e−αP ∗ = O(e−m).
The rest of the proof is by induction. Suppose that the claim holds for g1, . . . , gk.

Now, gk+1(P ∗) = −g′
k(P ∗)g(P ∗) = O(e−m) as g(P ∗) = O(1) and g′

k(P ∗) = O(e−m) by
induction assumption. Each derivative can be written as

dlgk+1(P ∗)
dP l

= −
l∑

j=0

(
l

j

)
g

(l−j+1)
k (P ∗)g(j)(P ∗) (31)

Each g
(l−j+1)
k (P ∗) = O(e−m) by induction assumption (as l−j +1 ≥ 1). When j = 0, then

g(j)(P ∗) = g(P ∗) = O(1). Therefore the first element of the sum is g
(l−0+1)
k (P ∗)g(0)(P ∗) =

O(e−m). For all other elements j > 0, so the term g(j)(P ∗) = O(e−m) and therefore each
g

(l−j+1)
k (P ∗)g(j)(P ∗) = O(e−2m). This proves that dlgk+1(P ∗)

dP l = O(e−m).

B Examples of Payoff Functions that Violate Assump-
tion 3

While there are many natural demand functions that satisfy assumption 3, some do not.
In this appendix, I discuss examples of such demand functions, i.e., functions D(P ) for
which the function g(P ) = −D(P )/D′(P ) is not d(A)-times monotone in P .27 Note
that even in this case, (9) in theorem 1 remains a necessary condition for an interior
equilibrium, but not a sufficient one. As we will see, without assumption 3, a pure-
strategy equilibrium may not exist or be unique, and the qualitative properties derived
in the paper might not hold. However, the characterization remains instructive, making
it easier to find candidates for equilibria and understand the economics of these failures.

B.1 Isoelastic Demand
Suppose that D(P ) = P −ε, where ε > 1 represents the demand elasticity. In this case,
g(P ) = − D(P )

D′(P ) = P
ε
, which is not strictly decreasing, so it does not satisfy assumption 3.

In fact, the condition ε > 1 is required because, otherwise, even assumption 2 is not
satisfied.28

If there are m firms making simultaneous choices, the necessary condition (9) simplifies
to

P − C = mg1(P ) = m
P

ε
,

or equivalently, P ∗ = εC
ε−m

. For this to be a valid equilibrium price, we need to have C > 0
and ε > m. In fact, these conditions are sufficient for the uniqueness and existence of
an interior equilibrium in this case. Note that we need a stronger parametric restriction,

27I am grateful to an anonymous referee for suggesting this discussion and these functional forms.
28Then PD(P ) = P 1−ε is increasing, indicating that there is not even an interior optimum for the

standard monopoly problem. This is a manifestation of a textbook result, where, in a monopoly optimum,
the demand elasticity must be above one.

34



which is natural, as the functional form of the D(P ) function does not guarantee the con-
cavity of profit functions automatically; a sufficiently high elasticity is required. However,
once these conditions are satisfied, we do have the multiple-marginalization problem as
before, since P ∗ is increasing in m.

Suppose now that we have m monopolists, and m1 > 0 are the first-movers who make
their choices in the first period simultaneously, while the remaining m2 = m − m1 > 0
observe their choices and move in the second period simultaneously. Then, equation (9)
becomes

P − C = mg1(P ) + m1g2(P ) = m
P

ε
− m1

P

ε2 ⇒ P ∗ = εC

ε − m + m1
ε

.

Note that now the condition ε > m can be relaxed slightly due to the positive term
m1
ε

. This effect comes from the fact that g2(P ) = − P
ε2 < 0, which means that actions

are strategic complements. Therefore, the m1 leaders have an incentive to reduce their
prices to encourage the followers to lower their prices as well, so the requirement for price
elasticity is not as high anymore.

For example, if m = 3 and m1 = 2, so that m2 = 1, then a sufficient condition for the
existence of equilibrium is now ε > 2, whereas in the three-player simultaneous case, we
required a stronger condition ε > 3. The multiple-marginalization is now decreased with
strategic impacts by the m1 players, as P ∗ is clearly decreasing in m1. Again, this comes
from the fact that prices are direct strategic complements here, whereas if assumption 3
were satisfied, they would be strategic substitutes.

We can proceed in the same way to study more complex networks. For example,
consider focusing again on three players and let’s make the game fully sequential. Then,
the equation equation (9) becomes:

P − C = 3g1(P ) + 3g2(P ) + g3(P ) = 3P

ε
− 3 P

ε2 + P

ε3 ⇒ P ∗ = Cε3

(ε − 1)3 .

We see that now it suffices to have ε > 1, which means that we don’t need any extra
assumptions compared to a standard monopoly problem. There is still a marginalization
problem, as Cε3

(ε−1)3 > Cε
ε−1 . However, the marginalization problem is now lessened compared

to networks where monopolists move simultaneously or in two periods. Intuitively, this
result balances two effects. On the one hand, g3(P ) = P

ε3 > 0, so the next higher-
order effect points towards strategic substitutes again. In other words, influences through
influences lead to discouragement. However, compared to simultaneous moves or moves
in only two periods, we also added more direct influences, which had the opposite sign.
In this functional form, the direct effect dominates the indirect one.

B.2 Mixtures of Regular Demand Functions
Another functional violation of assumption 3 occurs when we use a mixture of two stan-
dard demand functions, such as D(P ) = λ(1 − P )2 + (1 − λ)(1 − P )1/2 for λ ∈ (0, 1). In
the limits where λ = 0 or λ = 1, we have power functions D(P ) = (1−P )1/a with a = 1/2
and a = 2 respectively. Both satisfy assumption 3. In fact, these are simple cases where
g(P ) = a(1 − P ) is linear and thus gk(P ) = ak(1 − P ) functions are linear, making the
calculations especially simple.
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However, for λ ∈ (0, 1), these convenient properties fail. For example, with λ = 1
2 :

g(P ) = − D(P )
D′(P ) = (1 − P )2 + (1 − P )1/2

2(1 − P ) + 1
2(1 − P )−1/2 .

This is a non-linear function, which turns out to be positive and strictly decreasing in
P . Therefore, in the case of simultaneous decisions, theorem 1 still holds. When we now
compute:

g2(P ) = −g′(P )g(P ) =
2
(
P 2 − 2P +

√
1 − P + 1

)
(
4P

√
1 − P − 4

√
1 − P − 1

)3

×
(
−8P 2(1 − P )3/2 − P 2 + 16P (1 − P )3/2 − 8(1 − P )3/2 + 2P − 2

√
1 − P − 1

)
,

which is a positive but non-monotone function. Therefore, assumption 3 is not satisfied,
although actions are strategic substitutes. Thus, whether the solution to the necessary
condition in theorem 1 is indeed an equilibrium requires additional verification. When
we proceed by computing g3(P ), g4(P ), and so on, the expressions become too long to
display here. They are highly non-linear, non-monotone, and take both positive and
negative values.

An alternative aggregation. The calculations above point to an alternative way to
aggregate the demand function. The spirit of this example is to consider a demand
function “between” two basic demand functions, and the meaning of betweenness was
a weighted average. It turns out that this weighted average does not inherit the nice
properties of the original demand functions because the demand function itself was not
the right object to work with. A more relevant function is the corresponding g(P ) function.

Consider k demand functions D1, . . . , Dk that all satisfy assumption 3 and weights
λ1, . . . , λk > 0 such that ∑k

j=1 λj = 1. Let gj(P ) = −Dj(P )/dDj(P )
dP

. Now define

g(P ) =
k∑

j=1
λjg

j(P )

and the corresponding demand function D(P ) = e−
∫

1/(g(P )dP . Then by construction, the
new demand function D(P ) also satisfies assumption 3.

For example, let Dj(P ) = (1 − P )1/aj for j ∈ 1, . . . , k. Then gj(P ) = aj(1 − P ), so
that g(P ) = ∑k

j=1 gj(P ) = a(1−P ), where a = ∑k
j=1 λjaj. This function g(P ) = a(1−P )

corresponds to the demand function D(P ) = (1 − P )1/a = (1 − P )1/
∑k

j=1 λjaj .
Even more specifically, if we take the same parameters as above, i.e., k = 2, a1 =

1/2, a2 = 2 and λ1 = λ2 = 1/2, then we get a = 5/4 and therefore the "intermediate"
demand function between (1 − P )2 and (1 − P )1/2 would be (1 − P )5/4. This function
inherits all the relevant properties of the two original demand functions and could be
easily analyzed by the tools developed in the paper.
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B.3 Tullock Contest
Finally, consider a demand function D(P ) = v

P
− c and ci = 0 for all firms. In this case,

πi = (pi − 0)
(

v

P
− c

)
= pi

P
v − cpi,

This is a payoff function of a (Tullock) contest where firms choose costly actions at a
marginal cost c to win a prize of value v, with the probability of winning being pi/P .
This payoff function does not satisfy assumption 3, because g(P ) = P

(
1 − c

v
P
)

is not a
monotone function.

Nevertheless, Hinnosaar (2023) proves that at least in a special case of a sequential
contest, the sufficient conditions for existence and uniqueness are still satisfied. That
is, when players can be divided into T groups, where players in each group observe the
actions of all players in previous groups (or at least the sum of these actions) and move
simultaneously with players in the same group. Moreover, Hinnosaar (2023) also shows
that each gk(P ) ≥ 0 for P close to the equilibrium value P ∗. Therefore, the implications
on multiple-marginalization and influentiality still hold.
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