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Abstract

I study price setting within a network of interconnected monopolists. Some
firms possess stronger commitment or bargaining power than others, enabling them
to influence the pricing decisions of other firms. While it is well-understood that
multiple marginalization reduces both total profits and social welfare, I show that
strategic interactions within the network exacerbate the marginalization problem.
Individual profits are proportional to a new measure of network centrality, defined by
the equilibrium characterization. The results underscore the importance of network
structure in policy considerations, such as mergers or trade policies.
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1 Introduction
Most products are produced and sold through a network of interconnected producers, in-
termediaries, and retailers. These firms maximize profits, often wielding significant mar-
ket power. Furthermore, their pricing decisions are interdependent—by charging higher
prices, some firms can directly influence the pricing strategies of others. For instance, in
the book publishing industry, a publisher sources content, outsources printing, and relies
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on distributors to reach retail chains. Many of these players possess market power and
earn positive profits.1

This paper addresses the question: How do firms in a network set prices for their
products when they have market power and can influence other firms’ pricing decisions?
The main result is a characterization theorem. Under certain regularity conditions, a
unique equilibrium exists. The equilibrium condition has a natural interpretation: it
equalizes the difference between the equilibrium price of the final good and the total
marginal cost with a weighted sum of influences at all levels. At the most basic level,
a firm’s profit is directly affected by its own price increase. At the next level, a firm’s
price increase can alter the behavior of directly connected firms. Furthermore, each price
change can ripple through the network, influencing indirectly connected firms. These
influences are weighted by endogenous factors determined by the demand function’s shape
and equilibrium behavior.

How do social welfare and total profits depend on network structure? As predicted by
existing literature, in this model of firms with market power, multiple marginalization is
the primary distortion that reduces both profits and welfare. The key new insight from
this analysis is that network structure plays a crucial role in determining the extent of
the marginalization issue. I show that strategic interactions within a network magnify the
marginalization problem. For example, while a merger might seem to enhance efficiency
based on conventional wisdom, if it increases the control of the merged firms, it could
potentially negate the expected efficiency gains.

The rest of the paper is structured as follows. The next section discusses the related
literature. Section 3 introduces the model and discusses its assumptions. Section 4 pro-
vides the main characterization result and describes the main insights of the analysis.
Section 5 interprets the characterization by comparing it with some known benchmarks
and then discusses the key distortion—the magnification of multiple-marginalization. Sec-
tion 6 studies which firms are more influential and discusses the relationship between the
implied influentiality measure and standard network centrality measures. Section 7 de-
scribes how to apply the characterization result to compute the equilibrium and provides
further results for some of the most common demand functions. Section 8 concludes. All
proofs are in appendix A.

2 Related Literature
Industrial organization. This paper contributes to the literature on vertical integra-
tion. Spengler (1950) was the first to describe the double-marginalization problem, and
since then, the literature has extensively studied the benefits and costs of vertical control,
including Mathewson and Winter (1984), Grossman and Hart (1986), Rey and Tirole
(1986), Salinger (1988), Salinger (1989), Riordan (1998), Ordover et al. (1990), Farrell
and Shapiro (1990), Bolton and Whinston (1993), Kuhn and Vives (1999), Nocke and
White (2007), and Buehler and Gärtner (2013). Empirical work shows that production

1In a typical $26 book, retailers take about 50%, 13% covers printing and transport, and authors
receive around 15%, indicating significant markups. Source: New York Times article ’Math of Publishing
Meets the E-Book’ by Motoko Rich (Feb. 28, 2010), https://www.nytimes.com/2010/03/01/business/
media/01ebooks.html.
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often has a network structure (Atalay et al., 2011), and that mergers or the removal of
vertical restraints may sometimes harm consumers (Gayle, 2013; Crawford et al., 2018;
Luco and Marshall, 2020). While the theoretical literature analyzes various forms of com-
petition and contract structures, little is known about networks where firms with market
power operate at more than two levels (upstream-downstream). In this paper, I focus
on monopolistic producers and posted price contracts, extending the analysis to general
network structures. I show that strategic interactions on networks magnify multiple-
marginalization distortions. This magnification effect is missing from previous literature
because it requires accounting for indirect influences, which can only occur on networks
with more than two levels of interaction.

Nava (2015) is an exception, studying Cournot competition where trades are restricted
by network structures and providing a characterization result. Although the setup differs
from mine, it also identifies marginalization as a major source of inefficiency. However,
while inefficiency disappears with a large number of firms in their model, my model does
not exhibit this feature.

Network games. The paper contributes to the literature on network games, where
players take actions on a fixed network and the payoffs depend both on their own and
their neighbors’ actions. According to a survey by Jackson and Zenou (2015), most
works in this literature can be divided into two groups. First, a lot of progress has been
made in games with quadratic payoffs (or more generally, payoffs that imply linear best-
responses). A seminal paper is Ballester et al. (2006). It found that the equilibrium actions
are proportional to Bonacich centrality. Bramoullé and Kranton (2007), Calvó-Armengol
et al. (2009), Bramoullé et al. (2014), and Zhou and Chen (2015) study more general
variations of this game and find that Bonacich centrality still determines the equilibrium
behavior. Bloch and Quérou (2013) and Fainmesser and Galeotti (2016) study pricing
of goods with network externalities with quadratic payoffs and find that optimal pricing
leads to discounts that are proportional to Bonacich centrality. Bimpikis et al. (2019)
study Cournot competition on a bipartite network, where the sellers Cournot-compete
in markets which they have access to. They show that when the demands are linear
and costs quadratic, the equilibrium behavior is proportional to Bonacich centrality. The
second branch of network games studies games with non-quadratic payoffs and is generally
able to analyze only qualitative properties of the equilibria rather than provide a full
characterization. 2 A seminal paper is Galeotti et al. (2010).

Compared to these works, this paper provides a characterization result for a game on
a network with a relatively general payoff structure. The characterization defines a new
measure of influentiality, with firms’ choices and payoffs proportional to this measure. In
special cases where the best-response functions are linear, this measure is proportional
to Bonacich centrality. However, since the demand function and equilibrium behavior
endogenously define the weights, the measure of influentiality differs from Bonacich cen-
trality for all other demand functions. I provide examples of special cases where it can

2An exception is Choi et al. (2017), which studies price competition on networks, where consumers
choose the cheapest paths from source to destination and intermediaries set prices, thus making the
game a generalization of Bertrand competition. In settings where the players interact on a network
randomly, the analysis is more tractable, for example Manea (2011, 2018); Condorelli et al. (2017) who
study bargaining on networks.
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be equivalent to degree centrality or even independent of the network structure.3

Sequential and aggregative games. Methodologically, this paper builds on recent
advances in sequential and aggregative games. The model becomes an aggregative game
in a special case where firms make independent decisions. Aggregative games were first
proposed by Selten (1970), and there has been recent progress in the literature by Jensen
(2010), Martimort and Stole (2012), and Acemoglu and Jensen (2013), which has shed
new light on questions in industrial organization, as explored by Anderson et al. (2020)
and Nocke and Schutz (2018). One classic example of an aggregative game is a contest,
and this paper builds on recent work on sequential contests by Kahana and Klunover
(2018) and Hinnosaar (2024), extending the methodology to networks and asymmetric
costs.4

3 Model

3.1 Setup
The model is static and studies the supply of a single final good. The final good has a
demand function D(P ), where P is its price. The production and supply process requires
m inputs in constant proportion. I normalize the units of inputs so that one unit of each
input is required to produce one unit of output.

Input i is produced by a monopolistic firm i, that has a constant marginal cost ci and
a price pi for its product. The price pi is firm i’s per-unit revenue net of payments to
other firms in the model. Due to normalization, the quantity of firm i’s product (i.e.,
quantity of input i) is equal to D(P ). Therefore firm i gets profit πi(p) = (pi − ci)D(P ),
where p = (p1, . . . , pm+n) and the price of the final good is the sum of all net prices,
P = ∑m+n

i=1 pi. Each monopolist i sets the price pi strategically, i.e., maximizing profits,
anticipating the impact on sales of the final good.

To complete the description of the model, I need to specify how the price pi of firm
i affects the behavior of other monopolists, which I do by introducing the network of
influences. Formally, a network of influences consists of all m monopolists as nodes and
edges that define influences. The edges are described as an m × m adjacency matrix A,
where an element aij = 1 indicates that firm i influences firm j. That is, when firm j
chooses price pj, then it takes price pi as given and responds optimally to it. Of course,
firm i knows this and when choosing pi, it knows that j will respond optimally. Finally,
if i and j are not directly linked, i.e., aij = aji = 0, then neither responds to deviations

3Networks also play an important role in international trade and macroeconomics. Trade exhibits a
network structure (Chaney, 2014), with early works integrating vertical restraints and intermediaries’ roles
(Spencer and Jones, 1991; Antràs and Costinot, 2011). Recent literature focuses on network formation in
production (Oberfield, 2018; Liu, 2019). Compared to this literature, all firms in my model have market
power.

4Other papers at the intersection of contests and network literature include Franke and Öztürk (2015),
Matros and Rietzke (2018), Kovenock and Roberson (2018), Cortes-Corrales and Gorny (2024), Dziubiński
et al. (2021), and Amarasinghe et al. (2023), who study contests on networks, and Goyal et al. (2019),
who studies contagion on networks. The approach and questions studied in these works differ from those
in my paper.
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by the other firm. They expect the other firm to behave according to its equilibrium
strategy. For convenience, I assume that the diagonal elements aii = 0. I will discuss a
few examples of the network of influences in section 3.4.

In the end if this section, I will discuss the interpretation of the model in more detail.
Specifically, section 3.3 discusses the role and the generality of the assumptions about
the setup and section 3.4 discusses the interpretation of the network structures. However,
before I do this, I make three additional regularity assumptions that help with tractability
and guarantee the existence and uniqueness of the equilibrium.

3.2 Regularity Assumptions
The first regularity assumption specifies the class of networks.

Assumption 1. Network A is acyclic and transitive.5

It is natural to assume that the network is acyclic. If firm j takes pi as given, then firm
i cannot simultaneously take pj as given. A similar argument applies to cycles involving
more than two players. This assumption allows firms i and j to make independent choices
when aij = aji = 0, and the network does not need to be connected.6

The transitivity assumption requires that if firm i influences firm j and firm j influences
firm k, then firm i also directly influences firm k. In other words, firm k takes both pj

and pi as given. This assumption was naturally satisfied in the examples discussed earlier.
Relaxing the transitivity assumption introduces the possibility of indirect observability,
where firms might infer information about the prices of others through the prices they
observe. For instance, consider a network with three firms: 1, 2, and 3, where 1 influences
2, and 2 influences 3, but 1 does not have a direct influence on 3. In this case, firm 3
observes p2 and knows that it is chosen optimally for a given p1, but does not observe
p1. Thus, firm 3 would need to make an inference about p1 based on p2. Of course,
firm 2 knows that firm 3 would make such an inference and might try to manipulate it.
Such indirect observability would substantially complicate the analysis. The transitivity
assumption eliminates the need for indirect observability, thereby simplifying the analysis
considerably.

To be clear, both assumptions—acyclicity and transitivity—are restrictive and may
limit the model’s applicability. They serve different purposes in the analysis. Acyclicity
restores a sense of sequentiality to the model, enabling the construction of equilibrium
conditions and helping to guarantee equilibrium existence. In networks with cycles, firms
can influence each other in a potentially infinite loop, leading to influences of an infinitely
high degree. As I show below, with certain demand functions, such an infinite sequence of
influences can easily result in the non-existence of equilibrium. Transitivity is primarily a
technical assumption that simplifies the model by ruling out indirect observability, which
would otherwise add considerable complexity to the analysis.

The second regularity assumption puts standard restrictions on the demand function.
The demand function D(P ) is a smooth and strictly decreasing function. It either has a

5Acyclicity: ∄i1, . . . , ik such that ai1i2 = · · · = aik−1ik
= aiki1 = 1. Equivalently, Am = 0, where m is

the number of monopolists. Transitivity: if aij = ajk = 1, then aik = 1. Equivalently, A ≥ A2.
6Acyclicity also helps with tractability. Recent papers by Galeotti et al. (2021) and Pellegrino (2023)

explore related models without acyclicity, but they do not allow for sequential decisions.
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finite saturation point P at which the demand is zero or converges to zero fast enough so
that the profit maximization problem is well-defined.

Assumption 2. Demand function D : [0, P ) → R+ is continuously differentiable and
strictly decreasing in [0, P ) where P ∈ R+ ∪ {∞}. Moreover, it satisfies limit condition
limP →P PD(P ) = 0.

The third and final regularity assumption ensures that the demand function D(P ) is
well-behaved, so local first-order optimality conditions define that equilibrium. It is com-
mon in the literature to make a regularity assumption that D is twice differentiable and
profits single-peaked. In particular, in theoretical works the demand is often assumed to
be linear for tractability. However, in empirical literature logit demand is more common.
Here, I make an assumption about the demand function that would be analogous to the
standard regularity assumption and covers both linear and logit demand functions.

Let the depth of the network d(A) be the length of the longest path in A.7 Moreover,
let me define a function

g(P ) = − D(P )
D′(P ) , (1)

which is a convenient alternative way to represent the demand function. Note that g(P ) =
P

ε(P ) , where ε(P ) = −dD(P )
dP

P
D(P ) is the demand elasticity.8 Then I make the following

assumption about the shape of the demand function.

Assumption 3. g(P ) is strictly decreasing and d(A)-times monotone in P ∈ (0, P ), i.e.,
for all k = 1, . . . , d(A), derivative dkg(P )

dP k exists and (−1)k dkg(P )
dP k ≥ 0 for all P ∈ (0, P ).

To interpret the condition, let us look at the standard monopoly pricing problem
maxP π(P ) = maxP (P −C)D(P ). Then the first-order necessary condition for optimality
of P ∗ is

π′(P ∗) = D(P ∗) + (P ∗ − C)D′(P ∗) = 0 ⇐⇒ P ∗ − C = g(P ∗), (2)

which illustrates the convenience of the g(P ) notation. Moreover, a sufficient condition
for optimality is π′′(P ∗) < 0 or equivalently 2[D′(P ∗)]2 > D(P ∗)D′′(P ∗). Note that a
sufficient condition for this is [D′(P ∗)]2 > D(P ∗)D′′(P ∗), which is equivalent to g′(P ∗) < 0.
Therefore, in the standard monopoly problem, the monotonicity of g(P ) guarantees that
monopoly profit has a unique maximum that can be found using the first-order approach.
For general networks, the condition is stronger, as it also guarantees that best-responses
and best-responses to best-responses are well-behaved so that the first-order approach is
valid.

As illustrated by the monopoly example, the condition is sufficient and not necessary,
but it is easy to check, and it is satisfied for many applications. The following propo-
sition provides a formal statement by showing that with many typical functional form
assumptions on D(P ), the function g(P ) is completely monotone, i.e., d-times monotone
for arbitrarily large d ∈ N. Therefore assumption 3 is satisfied with all networks.

7Formally, d(A) is smallest d is such that Ad = 0. For instance, in example 3 in the subsection 3.4
(figure 2b) depth d(A) = 3, from the path R → D → F .

8Technically, g(P ) is the reciprocal of the demand semi-elasticity.
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Proposition 1 (Many demand functions imply completely monotone g(P )). Each of the
following demand functions implies d-times monotone g(P ) for any d ∈ N:

1. Linear demand D(P ) = a − bP with a, b > 0 ⇒ g(P ) = P − P , where P = a
b

> 0.

2. Power demand D(P ) = d β
√

a − bP with d, β, a, b > 0 ⇒ g(P ) = β(P − P ).

3. Logit demand D(P ) = d e−αP

1+e−αP with d, α > 0 ⇒ g(P ) = 1
α

[
1 + e−αP

]
.

4. Exponential demand D(P ) = a−beαP with a > b > 0, α > 0 ⇒ g(P ) = 1
α

[
Pe−αP − 1

]
.

Note that for all four functions assumption 2 is clearly also satisfied. Linear and
power demand functions have saturation point P , logit demand satisfies limP →∞ PD(P ) =
d limP →∞

1
αeαP = 0, and exponential demand has saturation point P = 1

α
log a

b
.9

3.3 Discussion of Assumptions
Let me make a few remarks about the model here. First, the network of influences is
a reduced-form way to capture sequential interactions. I will discuss more examples in
the next subsection, but one natural way to interpret it is through the lens of commit-
ment power—some firms may have more commitment power than others in their pricing
decisions. An alternative interpretation is bargaining power—they can make take-it-or-
leave-it offers. In this paper, I take the network as a fixed primitive of the model and
do not explicitly model its microfoundations. The network of influences makes the game
sequential. If aij = 1, then firm i sets its price pi before firm j. Firm j then observes pi

and may respond optimally. Of course, firm i knows this and can anticipate the response
of firm j. I am looking for pure-strategy perfect Bayesian equilibria, where players take
some of the choices of other players as given and maximize their profits, anticipating the
impact on other players’ choices and the final good demand.10

Second, I make an extreme assumption that a separate monopolist produces each
input. It is straightforward to extend the model to situations where some inputs are
produced by price-taking firms. This assumption would cover cases where these firms
operate in a perfectly competitive sector or compete as Bertrand competitors, in which
case the price is equal to the marginal cost of the second cheapest firm in this sector.
The firm could also operate in a regulated industry where its price is set by a regulator.
In all these cases, such an extension would simply mean that the price of the particular
input is equal to a constant, which will be added to the total marginal cost C in the
equilibrium characterization.11 This extension does not require that each firm is either
always a price-taker or always a monopolist. The assumption used in the characterization
is that monopolists behave according to their local optimality condition, whereas price-
takers take their prices locally as given. A firm could be a monopolist in one situation and

9Of course, not all demand functions satisfy assumption 3. In the working paper version of the paper,
I discuss some such examples. When assumption 3 is violated, there can still be unique equilibrium, but
also multiple equilibria or no equilibria at all.

10Although I am not excluding the possibility of mixed-strategy equilibria, I show that there always
exists a unique pure-strategy equilibrium, so it is natural to focus on it.

11See the working paper version of the paper for this extension.
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a price-taker when the model parameters change. However, covering cases between these
two extremes—where input is produced by an oligopolistic market in which multiple firms
have market power—is substantially more complex and will be left for future research.

Third, firms choose net prices pi. As the marginal costs are known and constant, this
is equivalent to assuming that firms choose dollar markups pi − ci. This assumption is
consistent with the empirical fact that the majority of firms in practice employ cost-plus
pricing Noble and Gruca (1999), i.e., they add a markup to their costs. It is less clear
whether this markup is defined in terms of a percentage or a dollar amount. Most authors
model it as a percentage markup, but there is also literature focusing on dollar markups
(Jeuland and Shugan, 1988; Choi, 1991; Wang et al., 2013). Wang et al. (2013) shows
that even in a simple model, these two assumptions are not equivalent. This equivalence
fails when firms are making simultaneous commitments. It is easy to see that in other
settings, such as in a fully sequential decision-making process, the two assumptions are
equivalent, and they are both equivalent to firms choosing cumulative prices.12

Fourth, the assumption that inputs are used in constant proportions (Leontief pro-
duction function) is clearly restrictive, but it is a relatively common assumption in the
literature (Costinot et al., 2013) and helpful in terms of tractability. Relaxing this as-
sumption would be interesting, but its complexity is beyond the scope of this paper.

3.4 Examples of Network of Influences
The network of influences I introduce in this paper is motivated by, but certainly not the
same as, the supply-chain network. A typical supply-chain network model specifies the
flows of goods and services (material flows), as well as the flows of money and information.
The specifics of these flows are neither necessary nor sufficient to characterize pricing
decisions.13 For pricing decisions, the model needs to specify what is known to each
monopolist when it makes a pricing decision and how it expects this decision to influence
the choices of other firms. In other words, the model needs to specify the observability of
prices and the commitment power of firms. As described above, I model this by assuming
that there is a commonly known network, such that whenever there is an edge from i to
j, firm j observes pi and therefore takes it into account in its optimization problem.

Consider a simple case with just two firms, F (final goods producer) and R (retailer).
Then there are three possible networks, illustrated by figure 1. First, figure 1a where firms
set their prices pF and pR independently, and the final good is sold at P = pF + pR. This
could be a reasonable assumption, for example, if both are large firms that interact with
many similar firms. In this case, the final goods producer F does not best-respond to a
particular retailer R but to the equilibrium price p∗

R of a representative retailer. Similarly,
the retailer does not best-respond to deviations by a particular producer F , but to the
equilibrium price p∗

F of a representative producer. Another example where it is natural to
12Consider m sequential firms and let the costs be zero. Firm k buys the product from firm k − 1

and pays Pk−1 =
∑k−1

i=1 pi for it. From firm k’s perspective, Pk is fixed, so it is evident that instead of
choosing net price (or dollar markup) pk, the firm’s optimization problem could be written as choosing
cumulative price Pk = Pk−1 + pk or percentage markup mk = pk

Pk−1
, as in the optimum, all three choices

lead to the same cumulative Pk, which is the only variable affecting the choices of other firms.
13Indeed, my model can alternatively be interpreted as a system of perfectly complementary products,

where producers make their pricing decisions over time (Matutes and Regibeau, 1992).
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make this assumption is when two firms are separately selling perfectly complementary
products to final consumers.

F R

(a) Example 1a

F R

(b) Example 1b

F R

(c) Example 1c

Figure 1: Example: Three possible two-player networks

Similarly, there could be many reasons for strategic influences. For example, a down-
stream influence from producer F to retailer R (figure 1b) may arise with a large producer
and a small retailer, where the representative retailer reacts optimally to pricing by F .
The large producer knows that retailers respond to its pricing and takes into account how
a representative retailer best-responds. Conversely, the influence could go in the opposite
direction (as in figure 1c) for the same reason—a large retailer R knows that a small
producer F will best-respond to its price changes. In this paper, I take these influences
as given and simply assume that some firms have more commitment power than others
for exogenous reasons.

Let me illustrate the network of influences with two more examples. Figure 2a depicts
an example of a retail chain with downstream-to-upstream influences. In this example,
there is a strong retailer R, who can commit to adding a markup pR on top of the wholesale
price PW , so that the price of the final good will be P = PW +pR. The wholesaler W takes
pR as given and commits to its markup pW , so that when the distributor’s price is PD, the
wholesale price is PW = PD +pW , and therefore the final good price is P = PD +pW +pR.
Then distributor D sets its markup pD, taking markups pW and pR as given. Finally, the
final good producer F sets a price pF , taking into account that the final consumer will
pay P = pF + pD + pW + pR.

F D W R

(a) Example 2 (A retail chain with
upstream-to-downstream influences)

L

T

F

C

D R

(b) Example 3 (A network with small pro-
ducer and a common raw-material pro-
ducer)

Figure 2: Two examples of networks with more than two firms

As argued above, influences can also go in the opposite direction—from downstream
to upstream. Moreover, there is no reason to assume that the flows of influence all move
in the same direction or that the network is a tree. Figure 2b provides another example,
where the same raw material L (labor) is used by three firms: T (transport), F (final goods
producer), and C (communication). These three firms set their prices independently, but
F additionally takes the markups of the D (distributor) and R (retailer) as given.
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4 Characterization
In this section, I first discuss two examples to illustrate the equilibrium characterization.
The main result of the paper is the characterization theorem that formalizes the approach.

4.1 Example: Non-linear Demand
The first example illustrates the complexities that arise from working with a non-linear
demand function when the decisions are sequential. Let us consider logit demand D(P ) =

e−P

1+e−P , costless production, and two monopolists who choose their prices sequentially, i.e.
as in example 1b in figure 1b. That is, first firm 1 chooses price p1, which is taken into
account by firm 2 when it chooses price p2. The price of the final good is P = p1 + p2.

The standard method of finding the equilibrium in this game is backward induction.
It starts by finding the best-response function of firm 2, by solving maxp2 p2D(p1 + p2).
The optimality condition is

dπ2

dp2
= D(p1 + p2) + p2D

′(p1 + p2) = 0 ⇐⇒ ep2(1 − p2) = e−p1 . (3)

Solving this gives the best-response function p∗
2(p1) = 1 + W (e−(p1+1)), where W (·) is

the Lambert W function14. Substituting p∗
2(p1) into the optimization problem of firm 1

gives a maximization problem maxp1 p1D(p1 + p∗
2(p1)). From this, we get the optimality

condition
1 + e−(p1+1)−W (e−(p1+1)) = p1

(
1 + −e−(p1+1)W (e−(p1+1))

e−(p1+1) + W (e−(p1+1))

)
. (4)

Solving the equation numerically gives p∗
1 ≈ 1.2088, therefore p∗

2 ≈ 1.0994 and P ∗ ≈
2.3082. However, optimality condition (4) cannot be solved analytically. This implies
that the standard approach is intractable when the network is more complex than the
one studied here. Backward induction cannot be used because computing best-response
functions and substituting them into the maximization problems of other firms is not
feasible. The issue is tractability—as the optimality conditions are non-linear, solving
them leads to complex expressions. Replacing best-responses sequentially amplifies these
complexities.

The solution to this problem comes from Hinnosaar (2024), which proposed charac-
terizing the behavior of the following players by inverted best-response functions.15 The
key observation is that although equation (3) is a highly non-linear function of p1 and p2
separately, fixing P = p1 +p2 leads to a linear equation for p2, or equivalently p1 = P −p2.
Therefore, for a fixed price of the final good, P , it is straightforward to find the price of
firm 2 that is consistent with the final good price P . I denote this by f2(P ), i.e.,

f2(P ) = p2 = − D(P )
D′(P ) = g(P )

14The function W (x) is defined as a solution to x = W (x)eW (x) (Euler, 1783). For a detailed description,
see https://en.wikipedia.org/wiki/Lambert_W_function.

15Kahana and Klunover (2018) developed independently and concurrently a similar approach to find
equilibria in n-player sequential Tullock contests.
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where g(P ) = 1 + e−P . Firm 1 knows that if it sets its price to p1, the price of the final
good will satisfy P = p1 + f2(P ). Therefore, we can think of firm 1’s problem as choosing
P to solve maxP [P − f2(P )]D(P ). Taking the first-order condition gives us

f1(P ) = p1 = P − f2(P ) = g(P )[1 − f ′
2(P )].

Therefore, if the final good’s price in equilibrium is P ∗, then the optimal behavior of both
players requires that P ∗ = f1(P ∗) + f2(P ∗) = 2g(P ∗) − g′(P ∗)g(P ∗). This equation is
straightforward to solve, and the same argument can be easily extended to more players
choosing sequentially.

There is one more pattern in these expressions that the characterization will exploit.
Namely, the condition for equilibrium is

P ∗ = 2g(P ∗) − g′(P ∗)g(P ∗) = 2g1(P ∗) + g2(P ∗),

where g1(P ∗) = g(P ∗) and g2(P ∗) = −g′
1(P ∗)g(P ∗). The expression on the right-hand

side consists of two elements. The first, 2g1(P ∗), captures the fact that two players each
individually maximize their profits. The second, g2(P ∗), captures the fact that player
1 influences player 2. It is straightforward to verify that, for example, if we were to
remove this influence—i.e., with two monopolists choosing their prices simultaneously—
the equilibrium condition would become P ∗ = 2g1(P ∗).

The main advantage of this approach is tractability. Instead of solving non-linear
equations at each step and inserting the resulting expressions into the next maximization
problems, which leads to increasingly complex non-linear expressions, this approach allows
combining all necessary conditions of optimality into one necessary condition. Under
assumptions 2 and 3, the resulting expression has a unique solution, which gives us a
unique candidate for an interior equilibrium. Under the same assumptions, the sufficient
conditions for optimality are also satisfied, thereby determining a unique equilibrium.

4.2 Example: Interconnected Decisions
The second example illustrates a new issue that arises in the case of networks—the de-
cisions are interconnected. In example 3 discussed earlier (figure 2b), firms L and D
make independent decisions, but due to their positions, they have different views on what
happens before and after them. Firm D influences only F , but L influences T and C as
well. Similarly, D takes pR as given, whereas L does not observe pR and therefore must
form an equilibrium conjecture about the optimal behavior of R. As a result, solving the
game using backward induction is no longer possible even if the demand function would
be linear.

To illustrate this issue, consider the simple network shown in figure 3. Let us assume
that the demand is linear D(P ) = 1 − P and all costs are zero. The strategies of the
four firms are, respectively, p∗

1, p∗
2, p∗

3(p1), and p∗
4(p1, p2). To find the equilibrium using

backward induction, we would first need to start with firms 3 and 4. Firm 4 maximizes
profit by taking p1 and p2 as given and assuming equilibrium behavior from firm 3. Thus,
its first-order condition would be a function of p∗

3(p1), so we would not be able to compute
firm 4’s best-response function without solving firm 3’s problem. Now, firm 3 maximizes
its profit, taking p1 as given. Its first-order condition would be a function of p∗

4(p1, p∗
2(p1))
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and p∗
2(p1). Thus, we are not able to solve for firm 3’s best-response function before

solving firm 2’s problem, and so on.

1

2

3

4

Figure 3: Example 4: network with interconnected decisions

Appendix B performs these somewhat tedious calculations first directly, as sketched
out above, and then using the inverted best-response approach. Of course, in both cases,
the equilibrium condition boils down to the same condition

P ∗ = 4g1(P ∗) + 3g2(P ∗) = 6(1 − P ∗),

where g1(P ) = −D(P )/D′(P ) = 1 − P and g2(P ) = −g′
1(P )g1(P ) = 1 − P . Solving this

equation is straightforward, and it gives P ∗ = 7
8 .

The advantage of the inverted best-response approach is that it combines all necessary
conditions into one, avoiding the tedious iterative process of solving the game backwards,
then simultaneously, then backwards again, and so on. In other words, the issues of
interconnected decisions are automatically mitigated.

4.3 Characterization
As illustrated by the examples above, it is useful to define functions g1, . . . , gn, which
capture relevant curvature properties of the demand function. They are defined recursively
as

g1(P ) = g(P ) = − D(P )
D′(P ) and gk+1(P ) = −g′

k(P )g(P ). (5)

As the discussion about monopoly profit maximization and the examples illustrated, g1(P )
captures the standard concavity of the profit function, whereas g2(P ) captures the direct
discouragement effect when a firm observes the price of another firm. Functions g3, . . . , gn

play a similar role in describing higher-order discouragement effects.
The adjacency matrix A provides a convenient way to keep track of the number of

direct and indirect influences. Multiplying the adjacency matrix with a column vector
of ones, A1, gives a vector with the number of edges going out from each player (i.e.,
the sum over columns). Similarly, 1′A1 is the total number of edges in the network, i.e.,
the total number of direct influences. Multiplying the adjacency matrix by itself, i.e.,
A2 = AA, gives a matrix that describes two-edge paths, i.e., element a2

i,j is the number
of paths from i to j with one intermediate step. Similarly, Ak is the matrix that describes
the number of all k-step paths from each i to each j. When we take k = 0, then A0 is
an identity matrix, which can be interpreted as 0-step paths (clearly, the only player that
can be reached from player i by following 0 edges is player i himself). To simplify the
notation, I assume that A0 is the identity matrix even when A = 0.
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Therefore, Ak1 is a vector whose elements are the numbers of k-step paths from player
i, which can be directly computed as e′

iA
k1, where ei is a column vector with the ith

element equal to 1 and all other elements equal to 0. Similarly, 1′Ak1 is the number of
all k-step paths in the network. The following expression performs these calculations for
the network in example 3 (figure 2b), which has six players, six edges, and one two-edge
path (R → D → F ).



A01 A11 A21 A31

L 1 3 0 0
T 1 0 0 0
F 1 0 0 0
C 1 0 0 0
D 1 1 0 0
R 1 2 1 0

1′Ak−11 6 6 1 0


.

With this notation, I can now state the main result of this paper—the characterization
theorem—which asserts that a unique equilibrium exists and shows how it is characterized
using the components we have discussed.

Theorem 1. There is a unique equilibrium, the final good price P ∗ is the solution to

P ∗ − C =
m∑

k=1
1′Ak−11gk(P ∗), (6)

and the individual prices are p∗
i = ci +∑m

k=1 e′
iA

k−11gk(P ∗) for all i.

The proof in appendix A builds on the ideas discussed above. A few remarks are in
order. Equation (6) combines all first-order conditions into one necessary condition for
equilibrium. The uniqueness of its solution is straightforward to establish. Assumption 3
implies that each gk(P ) is non-negative and weakly decreasing (this is formally shown
in lemma 2 in appendix A). The right-hand side of equation (6) is therefore decreas-
ing, whereas the left-hand side is strictly increasing.16 The connection to inverted best-
response functions is also clear, as the individual prices are determined by p∗

i = ci+fi(P ∗).
These arguments show that a unique combination of prices satisfies the first-order

conditions of all firms, which is the only candidate for an equilibrium. To verify that this
is indeed an equilibrium, note that we have identified a unique local optimum for each
firm, and it gives a strictly positive profit for each firm. As the firms’ profit functions
are continuously differentiable and the profit at the corner solutions is non-positive, this
must be a global maximizer. Thus, it is indeed an equilibrium outcome.

5 Multiple-marginalization Problem
Let me first interpret the equilibrium condition equation (6) by comparing it with the
known benchmark cases. First, suppose that there is a single monopolist, i.e., m = 1 and

16If assumption 3 fails, equation (6) may not have a solution or may have multiple solutions. Moreover,
without assumption 3, equation (6) is only necessary but not sufficient for equilibrium.
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A = [0]. Therefore, there is a single element on the right-hand side of (6) with value
g1(P ∗). We can rewrite the condition as

P ∗ − C

P ∗ = g1(P ∗)
P ∗ = 1

ε(P ∗) , (7)

which is the standard inverse-elasticity rule: a markup (or Lerner (1934) index) equals
the inverse elasticity. There is a usual monopoly distortion—as the monopolist does not
internalize the impact on consumer surplus, the equilibrium price of the final good P is
higher than the marginal cost C, and the equilibrium quantity is lower than the social
optimum. It is also the joint profit-maximization outcome.

Second, consider m > 1 monopolists who are making their decisions simultaneously.
That is, the network has m nodes but no edges. Analogously to the case with a single
monopolist, we can then rewrite the equilibrium condition as

P ∗ − C

P ∗ = 1′A01
g1(P ∗)

P ∗ = m

ε(P ∗) >
1

ε(P ∗) . (8)

The total markup is now strictly higher than in the case of a single monopolist. This is
the multiple-marginalization problem—firms do not internalize the impact on consumer
surplus, nor do they consider the impact on other firms. Therefore, the distortion is even
larger than in the case of a single monopolist, which means that both total profits and
social welfare are reduced compared to a single monopolist.17

Finally, the novel case studied in this paper involves multiple monopolists with some
influences. That is, m > 0 and A ̸= 0. In this case, the condition can be written as

P ∗ − C

P ∗ = m

ε(P ∗) +
m∑

k=2
1′Ak−11

gk(P ∗)
P ∗ . (9)

The total markup, and therefore the distortion, is even higher than with m independent
monopolists. The intuition for this is simple: suppose there is a single edge, so that
firm i influences firm j. Then, in addition to the trade-offs firm i had before, raising the
price now will reduce the profitability of firm j, who will respond by reducing its price.
Therefore, pi will be higher and pj lower than with simultaneous decisions. How about
the price of the final good, which depends on the sum of pi and pj? If the reduction in pj

were so large that the total price did not increase, then pi would not be optimal, as the
profit of firm i is (pi − ci)D(P ), i.e., increasing in pi and decreasing in P , so firm i would
want to raise the price even further. Thus, in equilibrium, the price of the final good
should increase. I formalize and generalize this observation in corollary 1. The corollary
follows from equation (6) and the non-negativity of gk functions.

Corollary 1 (Magnified Multiple-marginalization Problem). Suppose that there are two
networks A and B (both satisfying assumption 1) such that

17There are two ways to think about multiple-marginalization. Since the seminal work by Spengler
(1950), it has been mostly presented as a problem of sequential pricing. However, Cournot already
observed almost 200 years earlier that two monopolists pricing perfect complements independently would
distort the allocation more than a single monopolist pricing both (Sonnenschein, 1968). In this paper, I
analyze both. I refer to the Cournot interpretation as multiple-marginalization and the Spengler version
as magnified multiple-marginalization.
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1. 1′Ak−11 ≥ 1′Bk−11 for all k ∈ {1, . . . , m} and

2. 1′Ak−11 > 1′Bk−11 for at least one k,

then both social welfare and total profit in the case of A is lower than with B.

For example, if A is obtained by adding influences to B (in a way that still satisfies
assumption 1), then the assumption in corollary 1 is satisfied, and thus social welfare and
joint profits are decreased.

The result shows that the multiple-marginalization problem is increased with strategic
influences but does not quantify the magnitude of the increase. To illustrate that the
impact may be severe, let me provide some numerical examples. First, suppose that
demand is linear, D(P ) = 1−P , there are no costs, and there are no price-takers. Standard
calculations imply that the maximized total welfare would be 1

2 , and a single monopolist
would choose a price of 1

2 , which would lead to a dead-weight loss of 1
8 . Therefore, with

any network, the dead-weight loss is at least 1
8 and at most 1

2 . Figure 4 illustrates the
difference between the dead-weight loss in the best case (simultaneous decisions) and
the worst case (sequential decisions). Even in the best case (blue line with triangles),
the multiple-marginalization problem can be severe and increases with m. However, the
distortions with strategic interactions (red line with circles) are much higher for any
m, and the dead-weight loss approaches full destruction of social welfare quickly. This
comparison shows that strategic influences magnify the multiple-marginalization problem
for any m.

m

DWL

Figure 4: Example: comparison of dead-weight loss in the model with linear demand
between the best case (simultaneous decisions) and the worst case (sequential decisions)

How much the number of firms matters compared to strategic influences depends on
the shape of the demand function. If we perform the same calculation for a more general
power demand function D(P ) = β

√
a − bP , then when β is small, even with a large number

of firms, the dead-weight losses from the best and worst case networks are approximately
the same. However, when β is large, the difference is even larger than in the linear case.18

18In figure 4, with m = 10, the dead-weight loss in the best case is about 82.8% of the dead-weight loss
in the worst case. When β = 1

10 , the same fraction is 99.5%, whereas when β = 10, the fraction is 34.1%.
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This is natural, as β captures the decay of the importance of higher-order influences.
When β is small, the direct influences are much more important, whereas when β is large,
the higher-order influences matter more.

6 Influentiality

6.1 A Measure of Influentiality
All monopolists on the network have some market power and earn strictly positive profits.
However, some firms are more influential than others. Which firms and how does this de-
pend on the network? The answer comes directly from the characterization in theorem 1.
For brevity, let me denote

Ii(A) =
m∑

k=1
e′

iA
k−11gk(P ∗), (10)

which is a sum of scalars e′
iA

k−11 weighted by gk(P ∗). Note that e′
iA

01 = 1, e′
iA

11 is
the number of players i influences, e′

iA
21 is the number of two-edge paths starting from

i, and so on. Therefore, Ii(A) can be interpreted as a measure of the influentiality of
player i.

Fixing the equilibrium price of the final good P ∗, the individual markups are p∗
i − ci =

Ii(A), and therefore profits πi(p∗) = (p∗
i − ci)D(P ∗) = Ii(A)D(P ∗). Thus, Ii(A) fully

captures the network details that affect firm i’s action and payoff. Corollary 2 provides a
formal statement.

Corollary 2 (Ii(A) Summarizes Influences). Ii(A) > Ij(A) if and only if πi(p∗) > πj(p∗)
and pi − ci > p∗

j − cj.

This measure of influentiality Ii(A) depends both on the network structure and the
demand function. There are some cases when we can say more. In particular, if firm i
has more influences in all levels than firm j, i.e. e′

iA
k−11 ≥ e′

jA
k−11 for all k and the

inequality is strict for at least one k, then Ii(A) ≥ Ij(A) regardless of the weights gk(P ∗).
The inequality is strict whenever gk(P ∗) > 0 for k such that e′

iA
k−11 > e′

jA
k−11. For

example, when firm i influences firm j, then e′
iA

k−11 ≥ e′
jA

k−11, and the inequality is
strict for at least k = 1, so Ii(A) > Ij(A) with any demand function. The following
corollary formalizes this observation.19

Corollary 3 (Early-Mover Advantage). If aij then Ii(P ∗) > Ij(P ∗) and thus πi(p∗) >
πj(p∗) and p∗

i − ci > p∗
j − cj.

Looking at the examples in previous sections, these corollaries have some immediate
implications. Corollary 3 fully characterizes the influentiality in examples 1b–1c and 2,
where for each pair of firms (i, j), either aij = 1 or aji = 1. In the example 1a, the two
firms make simultaneous choices and obviously have the same influentiality and thus they
choose the same dollar markups pi − ci and get the same profit. This follows immediately

19This result generalizes the early-mover advantage result from Hinnosaar (2024).
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from corollary 2. In example 4 (figure 3), where the choices are both simultaneous and
sequential, corollary 2 still fully ranks the firms according to their influentiality, as firm 1
has two direct influences, firm 2 only one, and firms 3 and 4 have none. Therefore,

I1(A) > I2(A) > I3(A) = I4(A).

The remaining example 3 (figure 2b) illustrates that the influentiality measure is not
only a function of the network but also the demand function. Note that IL(A) = 3g1(P ∗),
whereas IR(A) = 2g1(P ∗)+g2(P ∗), so IL(A) > IR(A) if and only if g1(P ∗) > g2(P ∗). This
has an intuitive interpretation—if and only if indirect influences (in this case, R → D →
F ) are less important than direct influences (e.g., L → F ). In many network models, this
is assumed to be the case for mathematical properties because when cycles are possible,
otherwise the equilibrium is not guaranteed to exist. However, it is easy to find natural
demand functions where this property is not satisfied. For example, with power demand
D(P ) = d β

√
a − bP , gk(P ∗) = βk(P −P ∗) where P = a

b
, so g1(P ∗) > g2(P ∗) for any β < 1,

and the opposite strict inequality holds for β > 1.
I will discuss the connection between the influentiality measure and the classic network

centrality measures in the next section 6.2.

6.2 Connections with Network Centrality Measures
The measure of influentiality defined above is reminiscent of the classic measures of cen-
trality, as they capture the same effects: a player is more influential if it influences either
more players or more influential players. The difference is that while the classic central-
ity measures are defined purely using network characteristics, the influentiality measure
defined here has endogenous weights that are determined by the model parameters such
as the demand function, costs, and also by the price of the final good.

In some special cases, the connection is even closer. Consider again the case of power
demand, D(P ) = d β

√
a − bP . As I will show in section 7.2, this implies linear gk(P ) =

βk(P − P ). Therefore, Ii(A) = (P − P ∗)Bi(A; β), where Bi(A; β) = ∑m
k=1 βke′

iA
k−11

is the Bonacich centrality measure of player i.20 The general measure Ii(A) can be
thought of as a generalization of Bonacich centrality, where the weights are endogenously
determined by the demand function and the equilibrium, rather than having exponential
decay βk.

However, the influence measure does not always have to resemble Bonacich centrality.
Let me provide two more examples to show this. First, suppose D(P ) = de

√
2(a−bP )/b. This

is a specifically constructed demand function, which implies g(P ) = g1(P ) =
√

2(a − bP )
and therefore g2(P ) = b, which means that gk(P ) = 0 for all k > 2. With these weights,
the influentiality measure simplifies to Ii(A) =

√
2(a − bP ∗) + be′

iA1, i.e., it depends
only on the number of players directly influenced by player i. That is, the influentiality
measure is a linear function of the degree centrality in this case.

20The textbook definition of the Bonacich centrality measure (Jackson, 2008) uses the expression
Bi(A; β) = [I − βA]−11. Given the acyclicity of the network in this paper, this definition coincides
with the definition used above. Importantly, the standard Bonacich centrality measure requires β < 1 to
ensure convergence. However, in acyclic networks, β ≥ 1 can be allowed. This situation occurs naturally
with many demand functions, such as the power demand with β ≥ 1 mentioned in the previous section.
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For another example, consider logit demand D(P ) = d e−αP

1+e−αP . As I will show in
section 7.3, it may lead to complex expressions, but when m is large enough, g1(P ∗) ≈ 1

α

and gk(P ∗) ≈ 0 for k > 1. Therefore, Ii(A) ≈ 1
α
. This means that in the case of logit

demand with sufficiently many players, the network structure does not affect the pricing
of the individual firms. The relevant centrality measure is approximately a constant.

7 Computing the Equilibrium
In this subsection, I show how the equilibrium characterization can be used to compute
the equilibrium and study some standard demand functions where the characterization is
even simpler.

7.1 Linear Demand
Suppose that the demand function is linear D(P ) = a − bP . Then g(P ) = − D(P )

D′(P ) =
P − P = g1(P ) with P = a

b
, and therefore for all k > 1, gk+1(P ) = −g′

k(P )g(P ) = P − P .
Equation (6) simplifies to

P ∗ − C =
m∑

k=1
1′Ak−11gk(P ∗) = (P − P ∗)B(A; 1), (11)

where B(A; 1) = ∑m
k=1 1′Ak−11 is the sum of the number of influences at all levels, i.e.,

the number of players (1′A01 = m) plus the number of edges, plus the number of two-edge
paths, and so on. Equation (11) is a linear equation, and its solution is the equilibrium
price

P ∗ = C + PB(A; 1)
1 + B(A; 1) . (12)

As we would expect, increasing costs and increasing demand (P = a
b

in particular) will
raise the equilibrium price, but the pass-through is imperfect. Increasing the number of
firms or connections between firms increases the equilibrium price through the marginal-
ization effects discussed above. Similarly, we can compute the markups for individual
firms,

p∗
i = ci +

m∑
k=1

e′
iA

k−11gk(P ∗) = ci + Bi(A; 1)
1 + B(A; 1)(P − C), (13)

where Bi(A; 1) = ∑m
k=1 e′

iA
k−11 is the sum of influences of firm i, i.e., e′

iA
01 = 1 (“in-

fluencing” oneself) plus e′
iA

11 = number of players i influences plus the number of paths
starting from i. By construction B(A; 1) = ∑m

i=1 Bi(A; 1).
Consider again example 3 (figure 2b), for which the corresponding Ak−11 terms are

computed in section 4.3. Suppose that D(P ) = 1 − P , with no costs. Then B(A; 1) =
6 + 6 + 1 = 13, and therefore P ∗ = B(A;1)

1+B(A;1) = 13
14 . Similarly, individual prices are

p∗
i = Bi(A;1)

1+B(A;1) . For example, p∗
L = 4

14 , p∗
T = p∗

F = p∗
C = 1

14 , p∗
D = 2

14 , and p∗
R = 4

14 . In
particular, observe that p∗

L = p∗
R, but for different reasons—firm L influences three firms

directly, whereas R influences two firms directly and one indirectly. In the case of linear
demand, these two types of influences are weighted equally.
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7.2 Power Demand
The calculations are similar for a more general power demand D(P ) = d β

√
a − bP . Then

g(P ) = β(P − P ) with P = a
b
, and therefore gk(P ) = βk(P − P ), so that equation (6)

gives the same expression for the equilibrium price of the final good

P ∗ = C + PB(A; β)
1 + B(A; β) (14)

but now B(A; β) = ∑m
k=1 βk1′Ak−11, i.e., the influences at various levels are weighted by

1, β, β2, . . . . Here, β can be interpreted as a decay or discount factor for more indirect
influences.21 Similarly, for individual firms,

p∗
i = ci + Bi(A; β)

1 + B(A; β)(P − C), (15)

where Bi(A; β) = ∑m
k=1 βke′

iA
k−11, i.e., influences are again weighted by factor βk.

7.3 Logit Demand
Take logit demand D(P ) = d e−αP

1+e−αP with α > 0. Then g(P ) = 1
α

[
1 + e−αP

]
. Let us first

consider the example discussed in previous subsections to illustrate how the characteri-
zation result could be used for more complicated demand functions. Suppose again that
C = 0 and the network from example 3 (figure 2b), with C = 0. As the depth of the
network is d(A) = 3, we need to compute functions

g1(P ) = g(P ) = 1
α

[
1 + e−αP

]
,

g2(P ) = −g′
1(P )g(P ) = 1

α

[
1 + e−αP

]
e−αP ,

g3(P ) = −g′
2(P )g(P ) = 1

α

[
1 + e−αP

]
e−αP

[
1 + 2e−αP

]
.

The equilibrium condition (6) takes the form P ∗ = 6g1(P ∗) + 6g2(P ∗) + g3(P ∗), which is
straightforward to solve numerically. For example, when α = 1, we get

P ∗ = 6 + 13e−P ∗ + 9e−2P ∗ + 2e−3P ∗
,

implying P ∗ ≈ 6.0313 and individual prices p∗
L ≈ 1.0096, p∗

T = p∗
F = p∗

C ≈ 1.0024, p∗
D ≈

1.0048, and p∗
R ≈ 1.0096.

The numerical results point to a specific equilibrium property with logit demand—all
prices are only slightly above 1. Inspecting the gk(P ) functions above reveals the reason.
Specifically, the term e−αP ∗ converges to zero as P ∗ increases. Therefore, for sufficiently
large P ∗, the weight g1(P ∗) converges to a constant 1

α
, whereas the weights gk(P ∗) for

k > 1 converge to zero. Thus, if the equilibrium price P ∗ is large, it is almost solely
determined by the number of players. Lemma 1 formalizes this observation.

21Note that β > 0 (as otherwise demand would not be decreasing), but it can be greater or less than
1. In fact, when β = 1, the demand function is linear, so that B(A; β) = B(A; 1).
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n

P∗

n − 1

Figure 5: Bounds for equilibrium prices with logit demand D(P ) = e−P

1+e−P and C = 0
depending on the number of firms.

Lemma 1 (Approximate Equilibrium with Logit Demand). With logit demand D(P ) =
d e−α

1+e−αP , the price of final good P ∗ and individual prices p∗
i satisfy the following conditions

1. P ∗ > C + m
α

and p∗
i > ci + 1

α
for all i,

2. P ∗ = C + m
α

+ O
([

2
e

]m)
and p∗

i = ci + 1
α

+ O
([

2
e

]m)
for all i.22

Lemma 1 implies that when m is large enough, P ∗ ≈ C + m
α

and each p∗
i ≈ ci + 1

α
.

This is a limit result, but as we saw from the example above, the approximation with
m = 6 seems already quite precise. Figure 5 illustrates that the convergence is indeed
fast. It shows that while for small numbers of players, there is a difference between the
lower bound (simultaneous decisions) and the upper bound (sequential decisions), the
difference shrinks quickly and becomes negligible with 5–10 players. In particular, the
figure illustrates that 1

m

[
P ∗ − C − m

α

]
≈ 0 for any network with about ten players or

more.

8 Discussion
This paper characterizes the equilibrium behavior for a general class of price-setting games
on a network. Under regularity assumptions, there is a unique equilibrium, which is
straightforward to compute even with non-linear demand functions and complex networks.
For the most common demand functions, such as linear, power, and logit demand, I
provide even simpler characterization results.

The key distortion is multiple-marginalization. A novel finding of the paper is the
magnification of the marginalization problem: strategic interactions on the network lead
to an even bigger marginalization problem. Firms set too high markups not only because
they do not internalize the negative impact on consumer surplus and other firms’ profits
but also because they benefit from discouraging other firms from setting high markups.

The results define a natural measure of influentiality that ranks firms according to
their markups and profits. Firms are more influential if they influence more firms or more

22Where f(m) = O(g(m)) means that lim supm→∞

∣∣∣ f(x)
g(x)

∣∣∣ < ∞.
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influential firms. In some special cases, the influentiality measure simplifies to standard
measures of centrality. I provide examples where it takes the form of Bonacich centrality,
degree centrality, or is independent of the network structure.

The results of this paper are quite general in terms of network structure and demand
functions, but I make several simplifying assumptions in other areas. For example, I
assume constant marginal costs, which provides the model with tractability. Additionally,
I model the competition in an extreme way, with firms either being monopolists. The
model can be easily extended to situations where some inputs are produced by price-
takers. It would be interesting to study intermediate forms of imperfect competition.

In this paper, the analysis is described in terms of price setting on a network that
supplies a single final product. There are other applications fitting the same mathematical
model. An obvious example is multiple monopolists selling perfect complements. More
generally, the model applies whenever multiple players choose actions so that their payoffs
depend linearly on their own actions, the marginal benefit is a decreasing function of the
total action, and the actions are (higher-order) strategic substitutes. For example, private
provision of public goods and contests satisfy this general description.

Finally, the results have significant policy implications, which I have not discussed so
far. Policy decisions impact the network structure of production and thus influence the
network of influences discussed in this paper. For example, in merger analysis, vertical
mergers are typically considered socially desirable, as they reduce the number of firms
and, thus, the marginalization problem. However, in situations where a merger leads
to a new network of influences where the merged firm has stronger commitment power
and thus more indirect influences, a vertical merger can also reduce social welfare due to
magnified multiple-marginalization.23

References
Acemoglu, D. and M. K. Jensen (2013): “Aggregate Comparative Statics,” Games

and Economic Behavior, 81, 27–49.

Amarasinghe, A., P. A. Raschky, Y. Zenou, and J. Zhou (2023): “Conflicts in
Networks,” Manuscript.

Anderson, S. P., N. Erkal, and D. Piccinin (2020): “Aggregative Games and
Oligopoly Theory: Short-Run and Long-Run Analysis,” RAND Journal of Economics,
51, 470–495.

Antràs, P. and A. Costinot (2011): “Intermediated Trade,” Quarterly Journal of
Economics, 126, 1319–1374.

Atalay, E., A. Hortaçsu, J. Roberts, and C. Syverson (2011): “Network Struc-
ture of Production,” Proceedings of the National Academy of Sciences, 108, 5199–5202.

Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006): “Who’s Who in Net-
works. Wanted: The Key Player,” Econometrica, 74, 1403–1417.

23A formal discussion of this scenario is available in the working paper version of the paper.

21



Bimpikis, K., S. Ehsani, and R. İlkılıç (2019): “Cournot Competition in Networked
Markets,” Management Science.

Bloch, F. and N. Quérou (2013): “Pricing in Social Networks,” Games and Economic
Behavior, 80, 243–261.

Bolton, P. and M. D. Whinston (1993): “Incomplete Contracts, Vertical Integration,
and Supply Assurance,” Review of Economic Studies, 60, 121–148.

Bramoullé, Y. and R. Kranton (2007): “Public Goods in Networks,” Journal of
Economic Theory, 135, 478–494.

Bramoullé, Y., R. Kranton, and M. D’Amours (2014): “Strategic Interaction
and Networks,” American Economic Review, 104, 898–930.

Buehler, S. and D. L. Gärtner (2013): “Making Sense of Nonbinding Retail-Price
Recommendations,” American Economic Review, 103, 335–359.

Calvó-Armengol, A., E. Patacchini, and Y. Zenou (2009): “Peer Effects and
Social Networks in Education,” Review of Economic Studies, 76, 1239–1267.

Chaney, T. (2014): “The Network Structure of International Trade,” American Eco-
nomic Review, 104, 3600–3634.

Choi, S., A. Galeotti, and S. Goyal (2017): “Trading in Networks: Theory and
Experiments,” Journal of the European Economic Association, 15, 784–817.

Choi, S. C. (1991): “Price Competition in a Channel Structure with a Common Re-
tailer,” Marketing Science, 10, 271–296.

Condorelli, D., A. Galeotti, and L. Renou (2017): “Bilateral Trading in Net-
works,” Review of Economic Studies, 84, 82–105.

Cortes-Corrales, S. and P. M. Gorny (2024): “How Strength Asymmetries Shape
Multi-Sided Conflicts,” Economic Theory.

Costinot, A., J. Vogel, and S. Wang (2013): “An Elementary Theory of Global
Supply Chains,” Review of Economic Studies, 80, 109–144.

Crawford, G. S., R. S. Lee, M. D. Whinston, and A. Yurukoglu (2018): “The
Welfare Effects of Vertical Integration in Multichannel Television Markets,” Economet-
rica, 86, 891–954.

Dziubiński, M., S. Goyal, and D. E. N. Minarsch (2021): “The strategy of con-
quest,” Journal of Economic Theory, 191, 105161.

Euler, L. (1783): “De serie Lambertina Plurimisque eius insignibus proprietatibus,”
Acta Academiae scientiarum imperialis petropolitanae, 29–51.

Fainmesser, I. P. and A. Galeotti (2016): “Pricing Network Effects,” Review of
Economic Studies, 83, 165–198.

22



Farrell, J. and C. Shapiro (1990): “Horizontal Mergers: An Equilibrium Analysis,”
American Economic Review, 80, 107–126.

Franke, J. and T. Öztürk (2015): “Conflict Networks,” Journal of Public Economics,
126, 104–113.

Galeotti, A., B. Golub, S. Goyal, E. Talamàs, and O. Tamuz (2021): “Taxes
and Market Power: A Network Approach,” .

Galeotti, A., S. Goyal, M. O. Jackson, F. Vega-Redondo, and L. Yariv
(2010): “Network Games,” Review of Economic Studies, 77, 218–244.

Gayle, P. G. (2013): “On the Efficiency of Codeshare Contracts between Airlines: Is
Double Marginalization Eliminated?” American Economic Journal: Microeconomics,
5, 244–273.

Goyal, S., H. Heidari, and M. Kearns (2019): “Competitive Contagion in Net-
works,” Games and Economic Behavior, 113, 58–79.

Grossman, S. J. and O. D. Hart (1986): “The Costs and Benefits of Ownership: A
Theory of Vertical and Lateral Integration,” Journal of Political Economy, 94, 691–719.

Hinnosaar, T. (2024): “Optimal Sequential Contests,” Theoretical Economics, 19, 207–
244.

Jackson, M. O. (2008): Social and Economic Networks, Princeton University Press,
published: Hardcover.

Jackson, M. O. and Y. Zenou (2015): “Games on Networks,” in Handbook of Game
Theory With Economic Applications, Elsevier, vol. 4, 95–163.

Jensen, M. K. (2010): “Aggregative Games and Best-Reply Potentials,” Economic The-
ory, 43, 45–66.

Jeuland, A. P. and S. M. Shugan (1988): “Note—Channel of Distribution Profits
When Channel Members Form Conjectures,” Marketing Science, 7, 202–210, publisher:
INFORMS.

Kahana, N. and D. Klunover (2018): “Sequential Lottery Contests With Multiple
Participants,” Economics Letters, 163, 126–129.

Kovenock, D. and B. Roberson (2018): “The Optimal Defense of Networks of Tar-
gets,” Economic Inquiry, 56, 2195–2211.

Kuhn, K.-U. and X. Vives (1999): “Excess Entry, Vertical Integration, and Welfare,”
RAND Journal of Economics, 30, 575–603.

Lerner, A. P. (1934): “The Concept of Monopoly and the Measurement of Monopoly
Power,” The Review of Economic Studies, 1, 157–175.

23



Liu, E. (2019): “Industrial Policies in Production Networks,” Quarterly Journal of Eco-
nomics, 134, 1883–1948.

Luco, F. and G. Marshall (2020): “The Competitive Impact of Vertical Integration
by Multiproduct Firms,” American Economic Review, 110, 2041–2064.

Manea, M. (2011): “Bargaining in Stationary Networks,” American Economic Review,
101, 2042–2080.

——— (2018): “Intermediation and Resale in Networks,” Journal of Political Economy,
126, 1250–1301.

Martimort, D. and L. Stole (2012): “Representing Equilibrium Aggregates in Aggre-
gate Games With Applications to Common Agency,” Games and Economic Behavior,
76, 753–772.

Mathewson, G. F. and R. Winter (1984): “An Economic Theory of Vertical Re-
straints,” RAND Journal of Economics, 15, 27–38.

Matros, A. and D. Rietzke (2018): “Contests on Networks,” manuscript.

Matutes, C. and P. Regibeau (1992): “Compatibility and Bundling of Complemen-
tary Goods in a Duopoly,” Journal of Industrial Economics, 40, 37–54.

Nava, F. (2015): “Efficiency in Decentralized Oligopolistic Markets,” Journal of Eco-
nomic Theory, 157, 315–348.

Noble, P. M. and T. S. Gruca (1999): “Industrial Pricing: Theory and Managerial
Practice,” Marketing Science, 18, 435–454.

Nocke, V. and N. Schutz (2018): “Multiproduct-Firm Oligopoly: An Aggregative
Games Approach,” Econometrica, 86, 523–557.

Nocke, V. and L. White (2007): “Do Vertical Mergers Facilitate Upstream Collusion?”
American Economic Review, 97, 1321–1339.

Oberfield, E. (2018): “A Theory of Input-Output Architecture,” Econometrica, 86,
559–589.

Ordover, J. A., G. Saloner, and S. C. Salop (1990): “Equilibrium Vertical Fore-
closure,” American Economic Review, 80, 127–142.

Pellegrino, B. (2023): “Product Differentiation and Oligopoly: A Network Approach,”
Manuscript.

Rey, P. and J. Tirole (1986): “The Logic of Vertical Restraints,” American Economic
Review, 76, 921–939.

Riordan, M. H. (1998): “Anticompetitive Vertical Integration by a Dominant Firm,”
American Economic Review, 88, 1232–1248.

24



Salinger, M. A. (1988): “Vertical Mergers and Market Foreclosure,” Quarterly Journal
of Economics, 103, 345–356.

——— (1989): “The Meaning of "Upstream" and "Downstream" and the Implications for
Modeling Vertical Mergers,” Journal of Industrial Economics, 37, 373–387.

Selten, R. (1970): Preispolitik der Mehrproduktenunternehmung in der statischen The-
orie, Springer-Verlag.

Sonnenschein, H. (1968): “The Dual of Duopoly Is Complementary Monopoly: or,
Two of Cournot’s Theories Are One,” Journal of Political Economy, 76, 316–318.

Spencer, B. J. and R. W. Jones (1991): “Vertical Foreclosure and International
Trade Policy,” Review of Economic Studies, 58, 153–170.

Spengler, J. J. (1950): “Vertical Integration and Antitrust Policy,” Journal of Political
Economy, 58, 347–352.

Wang, J.-C., A. H.-L. Lau, and H.-S. Lau (2013): “Dollar vs. Percentage Markup
Pricing Schemes Under a Dominant Retailer,” European Journal of Operational Re-
search, 227, 471–482.

Zhou, J. and Y.-J. Chen (2015): “Key Leaders in Social Networks,” Journal of Eco-
nomic Theory, 157, 212–235.

A Proofs

A.1 Proof of proposition 1
Proof. In each case, I directly verify the claim:

1. Linear demand is a special case of power demand with d = β = 1.

2. Power demand implies g(P ) = − d(a−bP )
1
β

d 1
β

(a−bP )
1
β

−1(−b)
= β(P − P ), where P = a

b
. Then

−g′(P ) = β > 0 and (−1)k dkg(P )
dP k = 0, for all k > 1.

3. Logit demand implies g(P ) = 1
α

[
1 + e−αP

]
. Then (−1)k dkg(P )

dP k = αk−1e−αP > 0.

4. Exponential demand implies g(P ) = 1
α

[
Pe−αP − 1

]
. Therefore (−1)k dkg(P )

dP k =
αk−1Pe−αP > 0.
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A.2 Proof of theorem 1
Before the proof, let me introduce some useful notation. Each player i ∈ N = {1, . . . , m},
observes prices of some players. Let the set of these players be Oi = {j : aji = 1} ⊂ N
(possibly empty set) and vector of these prices pi = (pj)j∈Oi

. Player i’s strategy is p∗
i (pi).

Player i also influences some players, let the set of these players be Ii = {j : aij = 1} ⊂ N
(again, possibly empty). Each such player j ∈ Ii uses the equilibrium strategy p∗

j(pj). By
definition, i ∈ Oj, i.e., pi is one of the inputs in pj. However, i does not necessarily observe
all prices in pj, therefore it must make an equilibrium conjecture about these values. Let
pi

j(pi, pi) denote player j’s action as seen by player i. That is, pi
j(pi, pi) = p∗

j(p′
j), where

pj = (p′
k)k∈Oj

is such that p′
k = pk if k ∈ Oi or k = i and p′

k = pi
k(pi, pi) otherwise. The last

step makes the definition recursive, but it is well-defined, as each such step strictly reduces
the number of arguments in the function. Finally, there are also some players whose prices
that i neither observes nor influences, let this set be Uj = {j : aji = aij = 0} ⊂ N . For
these players, i expects the actions to be pi

j(pi) defined in the same way as above, but its
arguments do not include pi.

Using this notation, a firm i that observes pi and sets its price to pi, expects the price
of the final good to be

P i(pi|pi) = c0 + pi +
∑

j∈Oi

pj +
∑
j∈Ii

pi
j(pi, pi) +

∑
j∈Ui

pi
j(pi). (16)

The main idea in the proof is the following. Instead of choosing price pi to maximize
profit (pi − ci)D(P i(pi|pi)), we can think of player i choosing the final good price P
to induce. For this, let me assume that in the relevant range, P i(pi|pi) is smooth and
strictly increasing in pi, so that it has a differentiable and strictly increasing inverse
function fi(P |pi) such that P i(fi(P |pi)|pi) = P . Then the maximization problem is

max
P

[fi(P |pi) − ci]D(P ),

which leads to first-order condition f ′
i(P |pi)D(P )+[fi(P |pi)−ci]D′(P ) = 0 or equivalently

fi(P |pi) − ci = g(P )f ′
i(P |pi). (17)

Note that there is one-to-one mapping between representing equilibrium behavior in terms
of functions fi(P |pi) and in terms of p∗

i (pi).

Proof. Observe that the equilibrium must be interior, i.e., each ci < pi < P for each firm.
If this is not the case for the firm i, then its equilibrium profit is non-positive. This could
be for one of two reasons. First, the equilibrium price of the final good is so high that
D(P ) = 0. In this case, all equilibrium profits are non-positive and there must be at least
one firm i who, by reducing its price (and anticipating the responses of firms influenced),
can make the final good price low enough so that it ensures a strictly positive profit. This
would be a profitable deviation. Second, if P < P and pi ≤ ci, then firm i can raise its
price slightly and increase its profit.

I will first derive necessary conditions for an interior equilibrium and combine them
into one necessary condition, which gives equation (6). I then show that it has a unique
solution and finally verify that it is indeed an equilibrium by verifying that each firm
indeed chooses a price that maximizes its profit.
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Let us start with any player i who does not influence any other players, i.e., e′
iA1 = 0

or equivalently Ii = ∅. Then we can rewrite equation (16) as

P = c0 + fi(P |pi) +
∑

j∈Oi

pj +
∑
j∈Ui

pi
j(pi). (18)

Differentiating this expression with respect to P shows that f ′
i(P |pi) = 1 (that is, player

i can raise the price of the final good by ε by raising its own price by ε). Therefore
equation (17) implies fi(P |pi) = ci + g(P ). Note that this expression is independent of
pi, so I can drop it as an argument for fi and write simply as fi(P ) = ci + g(P ).

Let us take now any player i and suppose that the optimal behavior of all players
j ∈ Ii is described corresponding functions fj(P ) that do not depend on the remaining
arguments pj. Then we can rewrite equation (16) as

P = c0 + fi(P |pi) +
∑

j∈Oi

pj +
∑
j∈Ii

fj(P ) +
∑
j∈Ui

pi
j(pi). (19)

Differentiating this expression and inserting it to equation (17) gives

f ′
i(P |pi) = 1 −

∑
j∈Ii

f ′
j(P ) ⇒ fi(P |pi) = g(P )

1 −
∑
j∈Ii

f ′
j(P )

 . (20)

This expression is again independent of the arguments pi, which we can therefore drop.
Moreover, these arguments give precise analytic expressions for fi(P ) functions. We
already saw that fi(P ) = g(P ) = ∑m

k=1 e′
iA

k−11gk(P ) when e′
iA

k−11 = 0 for all k > 1
(i.e., players who do not influence anybody). Suppose that every player j ∈ Ii has

fj(P ) − cj =
m∑

k=1
e′

jA
k−11gk(P ). (21)

Then for player i we must have

fi(P ) − ci = g(P )
1 −

∑
j∈Ii

f ′
j(P )

 = g(P )︸ ︷︷ ︸
=e′

iA
01g1(P )

+
m∑

k=1
[−g′

k(P )g(P )]︸ ︷︷ ︸
gk+1(P )

, (22)

which, after change of variables from k to k − 1 and combining the terms, gives the same
expression as in equation (21).24

Therefore on-path, when the equilibrium price of the final good is P ∗, the individual
prices are indeed given by the expressions in the theorem. The price of the final good
must be sum of all the input prices, therefore P ∗ must satisfy

P ∗ = c0 +
∑
i∈N

fi(P ∗) = c0 +
∑
i∈N

cj︸ ︷︷ ︸
=C

+
m∑

k=1

∑
i∈N

e′
iA

k−11︸ ︷︷ ︸
=1′Ak−11

gk(P ∗),

which gives the equation (6).
24Note that no player can have level-m influences, i.e., e′

iA
m1 = 0.
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Below I prove two technical lemmas (lemmas 2 and 3) provide monotonicity properties
that imply existence and uniqueness of equilibria. We can rewrite equation (6) as f(P ) =
P −C −∑m

k=1 1′Ak−11gk(P ) = 0. At P = 0 we have f(0) = −C −∑m
k=1 1′Ak−11gk(0) < 0

and limP →P f(P ) > 0. By lemma 3, function f(P ) is strictly increasing and therefore
f(P ) = 0 has a unique solution, which is the equilibrium price of the final good P ∗ ∈
(0, P ).

Next, in the argument above, we assumed that the inverse function of fi(P ) function is
strictly increasing. The construction implied a necessary condition that fi(P ) must satisfy
and lemma 3 shows that it implies that fi(P ) is indeed strictly increasing, therefore the
inverse function P i(pi|pi) is indeed a well-defined strictly increasing function. Finally, to
verify that the solution we found is indeed an equilibrium, we need to verify that the
solution we derived is indeed a global maximizer for each firm. Notice that by lemma 3,
the optimality condition equation (17) has a unique solution for each firm. Therefore
we have identified a unique local optimum for each firm. As we already verified that
corner solutions would give non-positive profits for each firm and the interior solution
gives strictly positive profit, this must be a global maximizer.
Lemma 2 (Monotonicity of gk(P )). gk(P ) is (d(A) + 1 − k)-times monotone.

Proof. g1(P ) = g(P ) = − D(P )
D′(P ) is d(A)-times monotone by assumption 3. Therefore g′(P )

is (d(A) − 1)-times and g2(P ) = −g′
1(P )g(P ) is (d(A) − 1)-times monotone. The rest

follows by induction in the same way, if gk(P ) is (d(A) + 1 − k)-times monotone, then
gk+1(P ) = −g′

k(P )g(P ) is (d(A) − k)-times monotone.

Lemma 3 (Monotonicity of f(P ), fi(P )). The following monotonicity properties hold

1. f(P ) = P − C −∑m
k=1 1′Ak−11gk(P ) is strictly increasing,

2. fi(P ) = ci −∑m
k=1 e′

iA
k−11gk(P ) is strictly increasing for each i ∈ {1, . . . , m},

3. f ′
i(P )g(P ) = ∑m

k=1 e′
iA

k−11gk(P ) is (weakly) decreasing for each i ∈ {1, . . . , m}.

Proof. Each 1′Ak−11 and e′
iA

k−11 is a non-negative integer and each gk(P ) weakly de-
creasing in −P by lemma 2, which implies weak monotonicity of f ′

i(P )g(P ). More-
over, when k = 1, then g1(P ) = g(P ) which is strictly decreasing by assumption 3 and
e′

iA
k−11 = 1 > 0, which implies that fi(P ) is strictly increasing. As P − C is strictly

increasing, then f(P ) is also strictly increasing.

A.3 Proof of lemma 1
Remark: The equilibrium prices in our model, denoted as P ∗ and p∗

i , are determined by
all parameters of the model. In particular, the equilbrium prices depend on the number
of monopolists (m), their costs (ci), and the network’s structure (A).

Proof. Using the facts that g(P ) = 1
α

[
1 + e−αP

]
> 1

α
and gk(P ) > 0 for all k > 0,

equation (6) gives P ∗ = C +∑m
k=1 1′Ak−11gk(P ∗) > C + mg(P ∗) > C + m

α
. Similarly for

individual prices, p∗
i = ci +∑m

k=1 e′
iA

k−11gk(P ∗) > ci + g(P ∗) > ci + 1
α
.
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Using the lower bound for P ∗, we can bound e−αP ∗
< e−αC−α m

α = e−αCe−m. Therefore
e−αP ∗ = O(e−m). I use this result to prove lemma 4 that shows that g1(P ∗) = 1

α
+O(e−m)

and gk(P ∗) = O(e−m) for all k > 1. Using this, we can define Gm(P ∗) as follows

Gm(P ∗) ≡ max
{

g1(P ∗) − 1
α

, g2(P ∗), . . . , gm(P ∗)
}

= O(e−m).

Therefore equation (6) gives

P ∗ ≤ C + m

α
+

m∑
k=1

1′Ak−11Gm(P ∗) = C + m

α
+ O(e−m)B(A; 1), (23)

where B(A; 1) = ∑m
k=1 1′Ak−11. Now, note that B(A; 1) increases each time an edge is

added to A, so its upper bound is when the network is most connected (fully sequential
decisions) and lower bound with least connected network (simultaneous decisions), so
that m ≤ B(A; 1) ≤ 2m − 1. Therefore B(A; 1) = O(2m). Inserting this observation to
previous expression gives P ∗ = C + m

α
+ O

([
2
e

]m)
. Finally, for the equilibrium expression

for individual prices is

p∗
i = ci +

m∑
k=1

e′
iA

k−11gk(P ∗) = ci + 1
α

+ O(e−m)Bi(A; 1), (24)

where Bi(A) = ∑m
k=1 e′

iA
k−11, which is by the same arguments as above Bk(A; 1) =

O(2m) and therefore pi = ci + 1
α

+ O
([

2
e

]m)
.

Lemma 4. With logit demand D(P ) = d e−α

1+e−αP , functions gk(P ) and their derivatives
have the following limit properties at P = P ∗

1. g1(P ∗) = 1
α

+ O(e−m) = O(1), gk(P ∗) = O(e−m) for all k ∈ {2, . . . , m},

2. dlgk(P ∗)
dP l = O(e−m) for all k, l ∈ {1, . . . , m}.

Proof. We showed that e−αP ∗ = O(e−m). Consider g1(P ∗) first. We get g1(P ∗) = g(P ∗) =
1
α

+ 1
α
e−αP ∗ = 1

α
+ O(e−m) = O(1). Therefore, dlg1(P ∗)

dP l = −(−α)l−1e−αP ∗ = O(e−m).
The rest of the proof is by induction. Suppose that the claim holds for g1, . . . , gk.

Now, gk+1(P ∗) = −g′
k(P ∗)g(P ∗) = O(e−m) as g(P ∗) = O(1) and g′

k(P ∗) = O(e−m) by
induction assumption. Each derivative can be written as

dlgk+1(P ∗)
dP l

= −
l∑

j=0

(
l

j

)
g

(l−j+1)
k (P ∗)g(j)(P ∗) (25)

Each g
(l−j+1)
k (P ∗) = O(e−m) by induction assumption (as l−j +1 ≥ 1). When j = 0, then

g(j)(P ∗) = g(P ∗) = O(1). Therefore the first element of the sum is g
(l−0+1)
k (P ∗)g(0)(P ∗) =

O(e−m). For all other elements j > 0, so the term g(j)(P ∗) = O(e−m) and therefore each
g

(l−j+1)
k (P ∗)g(j)(P ∗) = O(e−2m). This proves that dlgk+1(P ∗)

dP l = O(e−m).
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B Calculations for section 4.2
The strategies of the firms are respectively p∗

1, p∗
2, p∗

3(p1), and p∗
4(p1, p2). Let us first

consider the problem of player 4, who observes p1 and p2 and expects equilibrium behavior
from player 3. Therefore player 4 solves

max
p4≥0

p4 [1 − p1 − p2 − p∗
3(p1) − p4] ,

which gives us a condition

p∗
4(p1, p2) = 1

2 [1 − p1 − p2 − p∗
3(p1)] .

While this condition provides a condition for the best-response function p∗
4(p1, p2), we

have not yet characterized it, as it would require knowing p∗
3(p1). Player 3 solves a similar

problem, but does not observe p2 and expects p4 to be p∗
4(p1, p∗

2), that is

max
p3≥0

p3 [1 − p1 − p∗
2 − p3 − p∗

4(p1, p∗
2)]

with the optimality condition

p∗
3(p1) = 1

2 [1 − p1 − p∗
2 − p∗

4(p1, p∗
2)] .

Again, computing this best-response function explicitly, requires knowing p∗
4(p1, p2), but

also the equilibrium price of player 2, i.e., p∗
2. To compute the best-response functions

explicitly (i.e., independently of each other), we first need to solve the equation system
that we get by inserting p∗

2 to the optimality condition of player 4. This gives us

p∗
3(p1) = p∗

4(p1, p∗
2) = 1

3 [1 − p1 − p∗
2] ⇒ p∗

4(p1, p2) = 1
3 [1 − p1] + 1

6p∗
2 − 1

2p2.

Note the prices p3 and p4 we have now characterized are still not the true best-response
functions, since they depend on the equilibrium price p∗

2, which is yet to be determined.
For this we need to solve the problem of player 2, who expects player 1 to choose equilib-
rium price p∗

1
max
p2≥0

p2 [1 − p∗
1 − p2 − p∗

3(p∗
1) − p∗

4(p∗
1, p2)] .

Taking the first-order condition and evaluating it at p2 = p∗
2 gives a condition

1
6 [2 − 2p∗

1 − 5p∗
2] = 0. (26)

Finally, player 1 solves a similar problem, taking p∗
2 as fixed, i.e.

max
p1≥0

p1 [1 − p1 − p∗
2 − p∗

3(p1) − p∗
4(p1, p∗

2)] .

Again, taking the first-order condition and evaluating it at p1 = p∗
1 gives

1
3 [1 − 2p∗

1 − p∗
2] = 0. (27)
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Solving the equation system equations (26) and (27) gives us p∗
1 = 3

8 , p∗
2 = 1

4 . Inserting
these values to the functions derived above gives us the best-response functions p∗

3(p1) =
1
4 − 1

3p1 and p∗
4(p1, p2) = 3

8 − 1
3p1 − 1

2p2. We can also compute the equilibrium prices
p∗

3(p∗
1) = p∗

4(p∗
1, p∗

2) = 1
8 . Therefore equilibrium price of the final good is P ∗ = 7

8 .
As the example illustrates, finding the equilibrium strategies requires solving a com-

bination of equation systems in parallel with finding the best-response functions. Each
additional edge in the network can create a new layer of complexity.

The inverted best-response approach solves this issue as follows. Consider the opti-
mization problem of firm 4. For given (p1, p2), it chooses optimal p4. We can rethink its
optimization problem as choosing the final good price P = p1 + p2 + p∗

3(p1) + p4 that it
wants to induce. We can rewrite its maximization problem as

max
P

[P − p1 − p2 − p∗
3(p1)]D(P ).

We get the optimality condition

D(P ) + [P − p1 − p2 − p∗
3(p1)]D′(P ) = 0 ⇐⇒ P − p1 − p2 − p∗

3(p1) = g(P ) = 1 − P.

This is a necessary condition for optimality, but since the problem is quadratic, it is easy
to see that it is also sufficient. This expression gives implicitly the best-response function
p∗

4(p1, p2). But more directly, the expression on the left-hand side is the optimal p4 that is
consistent with the final good price P and the optimal behavior of firm 4. Let us denote
it by f4(P ) = 1 − P . The problem for the firm 3 is analogous and gives f3(P ) = 1 − P .

Now, consider firm 2. Instead of choosing p2 it can again consider the choice of the
final good price P . Since only firm 4 observes its choice (and thus chooses p4 = f4(P ) as
a response to desired P ), the firm 2’s problem can be written as

max
P

[P − p∗
1 − p∗

3(p∗
1) − f4(P )]D(P ),

which gives us the optimality condition

[1 − f ′
4(P )]D(P ) + [P − p∗

1 − p∗
3(p∗

1) − f4(P )]D′(P ) = 0,

or equivalently, f2(P ) = P − p∗
1 − p∗

3(p∗
1) − f4(P ) = 2(1 − P ). Analogous calculation for

firm 1 gives f1(P ) = 3(1 − P ). Now, the equilibrium price P ∗ of the final good must be
consistent with individual choices. Therefore we get a condition

P ∗ =
4∑

i=1
fi(P ∗) = 7(1 − P ∗).

Solving this equation gives us P ∗ = 7
8 and individual prices p∗

1 = 3(1 − P ∗) = 3
8 , p∗

2 = 2
8 ,

and p∗
3 = p∗

4 = 1
8 .

Notice that the same calculations could be applied easily for non-linear demand func-
tions, with some g(P ) = −D(P )

D(P ) . This would give us an equilibrium condition

P ∗ =
4∑

i=1
fi(P ∗) = 4g1(P ∗) + 3g2(P ∗),

where g1(P ) = g(P ) and g2(P ) = −g′
1(P )g(P ). This is again the same pattern that we

saw in the previous example, since the number of players is 4 and the number of edges is
3. In the case of linear demand, g1(P ) = g(P ) = 1 − P and therefore g2(P ) = 1 − P .
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