Theory of the Firm, Fall 2016

Problem Set 5

Rules: (1) Submission deadline is **November 2nd at 16:30** in class or by e-mail (only typed solutions by e-mail). (2) Feel free to consult with your colleagues and any materials, but submit your own solutions. Have fun!

Problem 5.1

Consider duopoly facing inverse demand function p = P(Q) = a - bQ (or demand function $Q = D(\underline{p}) = \frac{1}{b}(a - \underline{p})$), where $Q = q_1 + q_1$ and $\underline{p} = \min\{p_1, p_2\}$. Suppose marginal cost is c for both firms.

- 1) Suppose that firms compete with prices (Bertrand game) infinitely many times and have common discount factor δ . Find the set of discount factors for which full collusion is possible.
- 2) Suppose that firms compete with quantities (Cournot game) infinitely many times and have common discount factor δ . Find the set of discount factors for which full collusion is possible.

Problem 5.2

Exercise 6.6* (page 251)

Problem 5.3

Exercise 6.4* (page 250)

Problem 5.4

Exercise 7.2** (page 282)¹

Problem 5.5

Consider the linear city model with linear costs. That is, consumers are distributed uniformly in the interval [0,1] and utility from buying from firm i is $\overline{s} - td_i - p_i$, where d_i is distance to firm i's location. There are two stores. Store 1 is located at a and Store 2 is located at $1 - b \ge a$. Both stores have constant marginal cost c. Denote $\Delta = 1 - a - b$. Suppose that the assumptions we made in class hold, i.e. all consumers buy from one of the stores and both stores sell positive quantity.

- 1) Derive demand functions.
- 2) Suppose that the locations (a, b) are fixed and stores choose prices (p_1, p_2) simultaneously. Suppose that the equilibrium is such that both firms sell positive quantities a get positive profits. Find the equilibrium prices.
- 3) Consider the case of maximal differentiation. What are the prices? What are the profits?

¹All references are to Tirole's book "The Theory of Industrial Organization".

4)	Consider the case of no differentiation. Is the equilibrium you found earlier consistent with Bertrand paradox? Why?